Skip to main content
Log in

Correlation of WOMAC and KOOS scores to tibiofemoral cartilage loss on plain radiography and 3 Tesla MRI: data from the osteoarthritis initiative

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to determine the correlation between the Western Ontario and McMasters Universities Osteoarthritis Index (WOMAC) and Knee Injury Osteoarthritis Outcomes scores (KOOS) and the degree of tibiofemoral cartilage loss on plain radiography and 3T magnetic resonance imaging (MRI). We hypothesize that these subjective outcome scores will have a significant correlation to quantitative joint space loss.

Methods

Data used in the preparation of this article were obtained from the osteoarthritis initiative (OAI) database (OAI public use data sets kMRI_QCart_Eckstein18 and kXR_QJSW_Duryea16). Four hundred and forty-five patients had WOMAC/KOOS scores, quantitative tibiofemoral joints space width on plain radiographs and quantitative tibiofemoral cartilage thickness and per cent full thickness cartilage loss on 3T MRI. Joint space width on plain radiographs was correlated to cartilage thickness on MRI, and WOMAC/KOOS scores were correlated to the degree of cartilage loss using Pearson correlation coefficients.

Results

There was a statistically significant correlation between medial and lateral compartment cartilage thickness on MRI and medial and lateral joint space width on plain radiography (r = 0.86, r = 0.80) (p < 0.001). KOOS knee pain score was significantly correlated to increasing per cent full thickness cartilage loss in the medial femoral compartment (r = 0.34) (p < 0.001). KOOS symptom score was significantly correlated to decreasing joint space width in the medial (r = 0.16) and lateral (r = 0.15) compartment and increasing per cent full thickness cartilage loss in the medial femoral compartment (r = 0.36) (p < 0.001). No WOMAC score was correlated to degree of joint space width, cartilage thickness or per cent full thickness cartilage loss (n.s).

Conclusion

The WOMAC and KOOS scores are poor indicators of tibiofemoral cartilage loss, with only the KOOS symptom and knee pain score being weakly correlated. Osteoarthritis is a multifactorial process and the need to treat patients based off their symptoms and rely on radiographs as confirmatory modalities, and not diagnostic modalities, when talking about OA and medical intervention.

Level of evidence

Level 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M et al (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 29(8):1039–1049

    Article  CAS  PubMed  Google Scholar 

  2. Barker K, Lamb SE, Toye F, Jackson S, Barrington S (2004) Association between radiographic joint space narrowing, function, pain and muscle power in severe osteoarthritis of the knee. Clin Rehabil 18(7):793–800

    Article  PubMed  Google Scholar 

  3. Bekkers JE, de Windt TS, Raijmakers NJ, Dhert WJ, Saris DB (2009) Validation of the Knee Injury and Osteoarthritis Outcome Score (KOOS) for the treatment of focal cartilage lesions. Osteoarthritis Cartilage 17(11):1434–1439

    Article  CAS  PubMed  Google Scholar 

  4. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840

    CAS  PubMed  Google Scholar 

  5. Benichou OD, Hunter DJ, Nelson DR, Guermazi A, Eckstein F, Kwoh K, Myers SL, Wirth W, Duryea J (2010) One-year change in radiographic joint space width in patients with unilateral joint space narrowing: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 62(7):924–931

    Article  CAS  Google Scholar 

  6. Bennett LD, Buckland-Wright JC (2002) Meniscal and articular cartilage changes in knee osteoarthritis: a cross-sectional double-contrast macroradiographic study. Rheumatology (Oxford) 41(8):917–923

    Article  CAS  Google Scholar 

  7. Boegard T, Rudling O, Petersson IF, Jonsson K (1998) Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the patellofemoral joint. Ann Rheum Dis 57(7):395–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Boegard T, Rudling O, Petersson IF, Jonsson K (1998) Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis 57(7):401–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Buckland-Wright C (1995) Protocols for precise radio-anatomical positioning of the tibiofemoral and patellofemoral compartments of the knee. Osteoarthritis Cartilage 3 Suppl A:71–80

    CAS  PubMed  Google Scholar 

  10. Buckland-Wright JC (1994) Quantitative radiography of osteoarthritis. Ann Rheum Dis 53(4):268–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Buckland-Wright JC, Bird CF, Ritter-Hrncirik CA, Cline GA, Tonkin C, Hangartner TN, Ward RJ, Meyer JM, Meredith MP (2003) X-ray technologists’ reproducibility from automated measurements of the medial tibiofemoral joint space width in knee osteoarthritis for a multicenter, multinational clinical trial. J Rheumatol 30(2):329–338

    PubMed  Google Scholar 

  12. Buckland-Wright JC, Wolfe F, Ward RJ, Flowers N, Hayne C (1999) Substantial superiority of semiflexed (MTP) views in knee osteoarthritis: a comparative radiographic study, without fluoroscopy, of standing extended, semiflexed (MTP), and schuss views. J Rheumatol 26(12):2664–2674

    CAS  PubMed  Google Scholar 

  13. Burgkart R, Glaser C, Hyhlik-Durr A, Englmeier KH, Reiser M, Eckstein F (2001) Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum 44(9):2072–2077

    Article  CAS  PubMed  Google Scholar 

  14. Creamer P, Hunt M, Dieppe P (1996) Pain mechanisms in osteoarthritis of the knee: effect of intraarticular anesthetic. J Rheumatol 23(6):1031–1036

    CAS  PubMed  Google Scholar 

  15. de Groot IB, Favejee MM, Reijman M, Verhaar JA, Terwee CB (2008) The Dutch version of the Knee Injury and Osteoarthritis Outcome Score: a validation study. Health Qual Life Outcomes 6:16

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dieppe PA, Cushnaghan J, Shepstone L (1997) The Bristol ‘OA500’ study: progression of osteoarthritis (OA) over 3 years and the relationship between clinical and radiographic changes at the knee joint. Osteoarthritis Cartilage 5(2):87–97

    Article  CAS  PubMed  Google Scholar 

  17. Dougados M, Ayral X, Listrat V, Gueguen A, Bahuaud J, Beaufils P, Beguin JA, Bonvarlet JP, Boyer T, Coudane H et al (1994) The SFA system for assessing articular cartilage lesions at arthroscopy of the knee. Arthroscopy 10(1):69–77

    Article  CAS  PubMed  Google Scholar 

  18. Duncan RC, Hay EM, Saklatvala J, Croft PR (2006) Prevalence of radiographic osteoarthritis—it all depends on your point of view. Rheumatology (Oxford) 45(6):757–760

    Article  CAS  Google Scholar 

  19. Duryea J, Li J, Peterfy CG, Gordon C, Genant HK (2000) Trainable rule-based algorithm for the measurement of joint space width in digital radiographic images of the knee. Med Phys 27(3):580–591

    Article  CAS  PubMed  Google Scholar 

  20. Eckstein F, Ateshian G, Burgkart R, Burstein D, Cicuttini F, Dardzinski B, Gray M, Link TM, Majumdar S, Mosher T, Peterfy C, Totterman S, Waterton J, Winalski CS, Felson D (2006) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage 14(10):974–983

    Article  CAS  PubMed  Google Scholar 

  21. Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M, Wirth W, Evelhoch JL (2005) Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0 T. Arthritis Rheum 52(10):3132–3136

    Article  PubMed  Google Scholar 

  22. Eckstein F, Hudelmaier M, Wirth W, Kiefer B, Jackson R, Yu J, Eaton CB, Schneider E (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the osteoarthritis initiative. Ann Rheum Dis 65(4):433–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Eckstein F, Maschek S, Wirth W, Hudelmaier M, Hitzl W, Wyman B, Nevitt M, Le Graverand MP (2009) One year change of knee cartilage morphology in the first release of participants from the osteoarthritis initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann Rheum Dis 68(5):674–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, Kazis L, Gale DR (2001) The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 134(7):541–549

    Article  CAS  PubMed  Google Scholar 

  25. Felson DT, Niu J, Guermazi A, Roemer F, Aliabadi P, Clancy M, Torner J, Lewis CE, Nevitt MC (2007) Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 56(9):2986–2992

    Article  PubMed  Google Scholar 

  26. Frobell RB, Wirth W, Nevitt M, Wyman BT, Benichou O, Dreher D, Davies RY, Lee JH, Baribaud F, Gimona A, Hudelmaier M, Cotofana S, Eckstein F (2010) Presence, location, type and size of denuded areas of subchondral bone in the knee as a function of radiographic stage of OA—data from the OA initiative. Osteoarthritis Cartilage 18(5):668–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Graichen H, von Eisenhart-Rothe R, Vogl T, Englmeier KH, Eckstein F (2004) Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum 50(3):811–816

    Article  PubMed  Google Scholar 

  28. Heppelmann B (1997) Anatomy and histology of joint innervation. J Peripher Nerv Syst 2(1):5–16

    CAS  PubMed  Google Scholar 

  29. Hill CL, Gale DG, Chaisson CE, Skinner K, Kazis L, Gale ME, Felson DT (2001) Knee effusions, popliteal cysts, and synovial thickening: association with knee pain in osteoarthritis. J Rheumatol 28(6):1330–1337

    CAS  PubMed  Google Scholar 

  30. http://oai.epi-ucsf.org/datarelease/operationsManuals/RadiographicManual.pdf

  31. http://oai.epi-ucsf.org/datarelease/SASDocs/kXR_QJSW_Rel_Duryea_Descrip.pdf

  32. Hunter DJ, March L, Sambrook PN (2003) The association of cartilage volume with knee pain. Osteoarthritis Cartilage 11(10):725–729

    Article  CAS  PubMed  Google Scholar 

  33. Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, Carter WO, Hellio Le Graverand MP, Kloppenburg M (2006) Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 239(3):811–817

    Article  PubMed  Google Scholar 

  34. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, Majumdar S (2003) Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226(2):373–381

    Article  PubMed  Google Scholar 

  35. Mazzuca SA, Brandt KD, Katz BP, Ding Y, Lane KA, Buckwalter KA (2006) Risk factors for progression of tibiofemoral osteoarthritis: an analysis based on fluoroscopically standardised knee radiography. Ann Rheum Dis 65(4):515–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. McAlindon TE, Snow S, Cooper C, Dieppe PA (1992) Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis 51(7):844–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. The Osteoarthritis Initiative. Available at http://oai.epi-ucsf.org/datarelease/default.asp

  38. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757

    CAS  PubMed  Google Scholar 

  39. Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y, Yu W, Genant HK (2003) Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 32(3):128–132

    Article  CAS  PubMed  Google Scholar 

  40. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, Kothari M, Lu Y, Fye K, Zhao S, Genant HK (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12(3):177–190

    Article  CAS  PubMed  Google Scholar 

  41. Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16(12):1433–1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Phan CM, Link TM, Blumenkrantz G, Dunn TC, Ries MD, Steinbach LS, Majumdar S (2006) MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol 16(3):608–618

    Article  PubMed  Google Scholar 

  43. Reginster JY (2002) The prevalence and burden of arthritis. Rheumatology (Oxford) 41(Supp 1):3–6

    Article  Google Scholar 

  44. Roos EM, Roos HP, Ekdahl C, Lohmander LS (1998) Knee injury and Osteoarthritis Outcome Score (KOOS)—validation of a Swedish version. Scand J Med Sci Sports 8(6):439–448

    Article  CAS  PubMed  Google Scholar 

  45. Salaffi F, Carotti M, Grassi W (2005) Health-related quality of life in patients with hip or knee osteoarthritis: comparison of generic and disease-specific instruments. Clin Rheumatol 24(1):29–37

    Article  PubMed  Google Scholar 

  46. Schneider E, NessAiver M, White D, Purdy D, Martin L, Fanella L, Davis D, Vignone M, Wu G, Gullapalli R (2008) The osteoarthritis initiative (OAI) magnetic resonance imaging quality assurance methods and results. Osteoarthritis Cartilage 16(9):994–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Spector TD, Hart DJ (1992) How serious is knee osteoarthritis? Ann Rheum Dis 51(10):1105–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Teichtahl AJ, Davies-Tuck ML, Wluka AE, Jones G, Cicuttini FM (2009) Change in knee angle influences the rate of medial tibial cartilage volume loss in knee osteoarthritis. Osteoarthritis Cartilage 17(1):8–11

    Article  CAS  PubMed  Google Scholar 

  49. Vignon E, Piperno M, Le Graverand MP, Mazzuca SA, Brandt KD, Mathieu P, Favret H, Vignon M, Merle-Vincent F, Conrozier T (2003) Measurement of radiographic joint space width in the tibiofemoral compartment of the osteoarthritic knee: comparison of standing anteroposterior and Lyon schuss views. Arthritis Rheum 48(2):378–384

    Article  PubMed  Google Scholar 

  50. Wirth W, Eckstein F (2008) A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging. IEEE Trans Med Imaging 27(6):737–744

    Article  PubMed  Google Scholar 

  51. Wirth W, Hellio Le Graverand MP, Wyman BT, Maschek S, Hudelmaier M, Hitzl W, Nevitt M, Eckstein F (2009) Regional analysis of femorotibial cartilage loss in a subsample from the osteoarthritis initiative progression subcohort. Osteoarthritis Cartilage 17(3):291–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wojtys EM, Beaman DN, Glover RA, Janda D (1990) Innervation of the human knee joint by substance-P fibers. Arthroscopy 6(4):254–263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The OAI is a public–private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, the NIH or the private funding partners. The authors would also like to acknowledge Brooke Robinson and Stephen Markwell for their assistance with manuscript preparation and statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled J. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illingworth, K.D., El Bitar, Y., Siewert, K. et al. Correlation of WOMAC and KOOS scores to tibiofemoral cartilage loss on plain radiography and 3 Tesla MRI: data from the osteoarthritis initiative. Knee Surg Sports Traumatol Arthrosc 22, 1649–1658 (2014). https://doi.org/10.1007/s00167-013-2402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2402-6

Keywords

Navigation