Skip to main content
Log in

Modal analysis of a fluid flowing over a porous substrate

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We study the modal stability analysis for a three-dimensional fluid flowing over a saturated porous substrate where the porous medium is assumed to be anisotropic and inhomogeneous. A coupled system of time-dependent evolution equations is formulated in terms of normal velocity, normal vorticity, and fluid surface deformation, respectively, and solved numerically by using the Chebyshev spectral collocation method. Two distinct instabilities, the so-called surface mode instability and the shear mode instability, are identified. Modal stability analysis predicts that the Darcy number has a destabilizing influence on the surface mode instability but has a stabilizing influence on the shear mode instability. Similarly, the surface mode instability intensifies but the shear mode instability weakens with the increase in the value of the coefficient of inhomogeneity. Although the anisotropy parameter shows a stabilizing effect, increasing porosity exhibits a destabilizing effect on the shear mode instability. However, the anisotropy parameter and porosity have no significant impact on the surface mode instability. Spanwise wavenumber is found to have a stabilizing influence on both the surface mode and shear mode instabilities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Samanta, A., Goyeau, B., Ruyer-Quil, C.: A falling film on a porous medium. J. Fluid Mech. 716, 414–444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kapitza, P.L., Kapitza, S.P.: Wave flow of thin layers of a viscous fluid: III. experimental study of undulatory flow conditions. In: Haar, D.T. (ed.) Collected Papers of P. L. Kapitza (1965), pp. 690–709. Pergamon, Oxford (1949)

  3. Alekseenko, S.V., Nakoryakov, V.E., Pokusaev, B.G.: Wave Flow in Liquid Films, 3rd edn. Begell House, New York (1994)

    MATH  Google Scholar 

  4. Chang, H.-C., Demekhin, E.A.: Complex Wave Dynamics on Thin Films, 1st edn. Elsevier, Amsterdam (2002)

    Google Scholar 

  5. Kalliadasis, S., Ruyer-Quil, C., Scheid, B., Velarde, M.: Falling Liquid Films, 1st edn. Springer, London (2012)

    Book  MATH  Google Scholar 

  6. Sparrow, E.M., Beavers, G.S., Chen, T.S., Lloyd, J.R.: Breakdown of the laminar flow regime in permeable-walled ducts. J. Appl. Mech. 40, 337–342 (1973)

    Article  Google Scholar 

  7. Deng, C., Martinez, D.M.: Linear stability of a Berman flow in a channel partially filled with a porous medium. Phys. Fluids 17, 024102 (2005)

    Article  MATH  Google Scholar 

  8. Chang, M.H., Chen, F., Straughan, B.: Instability of Poiseuille flow in a fluid overlying a porous layer. J. Fluid Mech. 564, 287–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hill, A., Straughan, B.: Poiseuille flow in a fluid overlying a porous medium. J. Fluid Mech. 603, 137–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hill, A., Straughan, B.: Poiseuille flow in a fluid overlying a highly porous material. Adv. Water Resour. 32, 1609–1614 (2009)

    Article  Google Scholar 

  11. Wu, Z., Mirbod, P.: Instability analysis of the flow between two parallel plates where the bottom one coated with porous media. Adv. Water Resour. 130, 221–228 (2019)

    Article  Google Scholar 

  12. Tilton, N., Cortelezzi, L.: Linear stability analysis of pressure-driven flows in channels with porous walls. J. Fluid Mech. 604, 411–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, T.Y., Chen, F., Chang, M.H.: Stability of plane Poiseuille–Couette flow in a fluid layer overlying a porous layer. J. Fluid Mech. 826, 376–395 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Samanta, A.: Role of slip on the linear stability of a liquid flow through a porous channel. Phys. Fluids 29, 094103 (2017)

    Article  Google Scholar 

  15. Samanta, A.: Linear stability of a plane Couette–Poiseuille flow overlying a porous layer. Int. J. Multiphase Flow 123, 103160 (2020)

    Article  MathSciNet  Google Scholar 

  16. Hooshyar, S., Yoshikawa, H.N., Mirbod, P.: The impact of imposed Couette flow on the stability of pressure-driven flows over porous surfaces. J. Eng. Math. 132, 15 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deepu, P., Anand, P., Basu, S.: Stability of Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous layer. Phys. Rev. E 92, 023009 (2015)

    Article  MathSciNet  Google Scholar 

  18. Karmakar, S., Usha, R., Chattopadhyay, G., Millet, S., Reddy, J.V.R., Shukla, P.: Stability of a plane Poiseuille flow in a channel bounded by anisotropic porous walls. Phys. Fluids 34, 034103 (2022)

    Article  Google Scholar 

  19. Samanta, A.: Nonmodal and modal analyses of flow through inhomogeneous and anisotropic porous channel. Int. J. Multiphase Flow 157, 104230 (2022)

    Article  MathSciNet  Google Scholar 

  20. Pascal, J.P.: Linear stability of fluid flow down a porous inclined plane. J. Phys. D Appl. Phys. 32, 417–422 (1999)

    Article  Google Scholar 

  21. Sadiq, M.R., Usha, R.: Thin Newtonian film flow down a porous inclined plane: stability analysis. Phys. Fluids 20, 022105 (2008)

    Article  MATH  Google Scholar 

  22. Samanta, A., Ruyer-Quil, C., Goyeau, B.: A falling film down a slippery inclined plane. J. Fluid Mech. 684, 353–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kandel, H.N., Pascal, J.P.: Inclined fluid-film flow with bottom filtration. Phys. Rev. E 88, 052405 (2013)

    Article  Google Scholar 

  24. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philos. Soc. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  25. Deepu, P., Dawande, S., Basu, S.: Instabilities in a fluid overlying an inclined anisotropic and inhomogeneous porous layer. J. Fluid Mech. 762, 2 (2015)

    Article  MathSciNet  Google Scholar 

  26. Deepu, P., Kallurkar, S., Anand, P., Basu, S.: Stability of a liquid film flowing down an inclined anisotropic and inhomogeneous porous layer: an analytical description. J. Fluid Mech. 807, 135–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kvernvold, O., Tyvand, P.A.: Nonlinear thermal convection in anisotropic porous media. J. Fluid Mech. 90, 609–624 (1979)

    Article  MATH  Google Scholar 

  28. Chen, F., Hsu, L.H.: Onset of thermal convection in an anisotropic and inhomogeneous porous layer underlying a fluid layer. J. Appl. Phys. 69, 6289–6301 (1991)

    Article  Google Scholar 

  29. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  30. Samanta, A.: Effect of porous layer on the faraday instability in viscous liquid. Proc. R. Soc. A 476, 20200208 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goyeau, B., Lhuillier, D., Gobin, D., Velarde, M.G.: Momentum transfer at a fluid-porous interface. Int. J. Heat Mass Transf. 46, 4071–4081 (2003)

    Article  MATH  Google Scholar 

  32. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid ii. Comparison with experiment. Int. J. Heat and Mass Transfer 38, 2647–2655 (1995)

    Article  MATH  Google Scholar 

  33. Straughan, B.: Effect of property variation and modelling on convection in a fluid overlying a porous layer. Int. J. Numer. Anal. Methods Geomech. 26(1), 75–97 (2002)

    Article  MATH  Google Scholar 

  34. Paek, J., Kang, B., Kim, S., Hyun, J.M.: Effective thermal conductivity and permeability of aluminum foam materials. Int. J. Thermophys. 21, 453–464 (2000)

    Article  Google Scholar 

  35. Goharzadeh, A., Khalili, A., Jørgensen, B.B.: Transition layer thickness at a fluid-porous interface. Phys. Fluids 17(5), 057102 (2005)

    Article  MATH  Google Scholar 

  36. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid i. Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995)

    Article  MATH  Google Scholar 

  37. Sengupta, S., De, S.: Stability of Poiseuille flow of a Bingham fluid overlying an anisotropic and inhomogeneous porous layer. J. Fluid Mech. 874, 573–605 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Whitaker, S.: Flow in porous media i: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

  39. Whitaker, S.: The Method of Volume Averaging, vol. Averaging. Kluwer Academic Publishers, London (1999)

    Book  Google Scholar 

  40. Chen, F.: Salt-finger instability in an anisotropic and inhomogeneous porous substrate underlying a fluid layer. J. Appl. Phys. 71, 5222–5236 (1992)

    Article  Google Scholar 

  41. Floryan, J.M., Davis, S.H., Kelly, R.E.: Instabilities of a liquid film flowing down a slightly inclined plane. Phys. Fluids 30, 983–989 (1987)

    Article  Google Scholar 

  42. Liu, R., Liu, Q.: Instabilities and transient behaviors of a liquid film flowing down a porous inclined plane. Phys. Fluids 22, 074101 (2010)

    Article  MATH  Google Scholar 

  43. Olsson, P.J., Henningson, D.S.: Optimal disturbance growth in watertable flow. Stud. Appl. Math. 94, 183–210 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Samanta, A.: Optimal disturbance growth in shear-imposed falling film. AIChE J. 66, 16906 (2020)

    Article  Google Scholar 

  45. Samanta, A.: Modal analysis of a viscous fluid falling over a compliant wall. Proc. R. Soc. A 477, 20210487 (2021)

    Article  MathSciNet  Google Scholar 

  46. Schmid, P., Henningson, D.: Stability and Transition in Shear Flows. Springer, New York (2001)

    Book  MATH  Google Scholar 

  47. Chen, F., Chen, C.F.: Onset of fingering convection in a horizontal porous layer underlying a fluid layer. J. Heat Transf. 110, 403–409 (1988)

    Article  Google Scholar 

  48. Liu, R., Liu, Q.S., Zhao, S.C.: Instability of a plane Poiseuille flow in a fluid-porous system. Phys. Fluids 20, 104105 (2008)

    Article  MATH  Google Scholar 

  49. Drazin, P.G.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  50. Monkewitz, P.A., Huerre, P., Chomaz, J.-M.: Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech. 251, 1–20 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewer for his constructive comments on improving the manuscript.

Funding

There is no funding for the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Samanta.

Ethics declarations

Author contribution

AS involved in conceptualization, methodology, investigation, simulation, writing—review and editing, and writing—original draft.

Availability of data and materials

The datasets are already available in the manuscript.

Ethical approval

Not applicable.

Conflict of interest

The author declares no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Squire’s transformation for the gravity-driven fluid flowing over a porous substrate

Appendix A: Squire’s transformation for the gravity-driven fluid flowing over a porous substrate

Using the normal mode solution, the three-dimensional perturbation Eqs. (18)–(31) can be written as

$$\begin{aligned} ik_x{\hat{u}}+\partial _y{\hat{v}}+ik_z{\hat{w}}= & {} 0,~ 0 \le y \le 1,\end{aligned}$$
(A1)
$$\begin{aligned} ik_x(U-c){\hat{u}}+\partial _yU{\hat{v}}+ik_x{\hat{p}}-[\partial _{yy}-(k_x^2+k_z^2)]{\hat{u}}/{\text {Re}}= & {} 0,~ 0 \le y \le 1,\end{aligned}$$
(A2)
$$\begin{aligned} ik_x(U-c){\hat{v}}+\partial _y{\hat{p}}-[\partial _{yy}-(k_x^2+k_z^2)]{\hat{v}}/{\text {Re}}= & {} 0,~0 \le y \le 1, \end{aligned}$$
(A3)
$$\begin{aligned} ik_x(U-c){\hat{w}}+ik_z{\hat{p}}-[\partial _{yy}-(k_x^2+k_z^2)]{\hat{w}}/{\text {Re}}= & {} 0, ~0 \le y \le 1, \end{aligned}$$
(A4)
$$\begin{aligned} ik_{x}{\hat{u}}_p+\partial _y{\hat{v}}_p+ik_{z}{\hat{w}}_p= & {} 0,~~ -\delta \le y \le 0,\end{aligned}$$
(A5)
$$\begin{aligned} -(1/\varepsilon )ik_{x}c{\hat{u}}_p+ik_{x}{\hat{p}}_p+[1/({\text {Re~Da}}\,\eta _x)]{\hat{u}}_p= & {} 0,~~ -\delta \le y \le 0,\end{aligned}$$
(A6)
$$\begin{aligned} -(1/\varepsilon )ik_{x}c{\hat{v}}_p+\partial _y{\hat{p}}_p+[\xi /({\text {Re~Da}}\,\eta _y)]{\hat{v}}_p= & {} 0,~~ -\delta \le y \le 0,\end{aligned}$$
(A7)
$$\begin{aligned} -(1/\varepsilon )ik_{x}c{\hat{w}}_p+ik_{z}{\hat{p}}_p+[1/({\text {Re~Da}}\,\eta _z)]{\hat{w}}_p= & {} 0,~~ -\delta \le y \le 0, \end{aligned}$$
(A8)
$$\begin{aligned} {\hat{v}}_p=0,{} & {} ~~\textrm{at}~~y=-\delta ,\end{aligned}$$
(A9)
$$\begin{aligned} \partial _y{\hat{u}}=(\alpha _{BJ}/\sqrt{{\text {Da}}\,\eta _x})({\hat{u}}-{\hat{u}}_p),{} & {} ~~ \textrm{at}~~ y=0,\end{aligned}$$
(A10)
$$\begin{aligned} \partial _y{\hat{w}}=(\alpha _{BJ}/\sqrt{{\text {Da}}\,\eta _z})({\hat{w}}-{\hat{w}}_p),{} & {} ~~ \textrm{at}~~ y=0,\end{aligned}$$
(A11)
$$\begin{aligned} {\hat{v}}={\hat{v}}_p, ~~ {\hat{p}}={\hat{p}}_p,{} & {} ~~\textrm{at}~~ y=0,\end{aligned}$$
(A12)
$$\begin{aligned} \partial _y{\hat{u}}+ik_x{\hat{v}}+{\hat{h}}\partial _{yy}U=0,{} & {} ~~ \textrm{at}~~ y=1,\end{aligned}$$
(A13)
$$\begin{aligned} \partial _y{\hat{w}}+ik_z{\hat{v}}=0,{} & {} ~~ \textrm{at}~~ y=1,\end{aligned}$$
(A14)
$$\begin{aligned} -{\hat{p}}+(2/{\text {Re}}) \partial _y{\hat{v}}=-{\text {We}}(k_x^2+k_z^2){\hat{h}}-(\cos \theta /{\text {Fr}}^2){\hat{h}},{} & {} ~~ \textrm{at}~~ y=1,\end{aligned}$$
(A15)
$$\begin{aligned} ik_x(U-c){\hat{h}}={\hat{v}},{} & {} ~~ \textrm{at}~~ y=1. \end{aligned}$$
(A16)

Now, we use the following extended Squire’s transformations [15, 49]: \(k_x{\hat{u}}+k_z{\hat{w}}={\tilde{k}}{\tilde{u}}\), \({\hat{v}}={\tilde{v}}\), \({\tilde{k}}{\hat{p}}=k_x{\tilde{p}}\), \({\tilde{k}}=\sqrt{k_x^2+k_z^2}\), \(c={\tilde{c}}\), \(k_x{\text {Re}}={\tilde{k}}{\tilde{{\text {Re}}}}\), \(k_{x}{\hat{u}}_p+k_{z}{\hat{w}}_p={\tilde{k}}{\tilde{u}}_p\), \({\hat{v}}_p={\tilde{v}}_p\), \({\tilde{k}}{\hat{p}}_p=k_x{\tilde{p}}_p\), Da \(={\tilde{{\text {Da}}}}\), \(\varepsilon ={\tilde{\varepsilon }}\), \(\eta _x={\tilde{\eta }}_x\), \(\eta _y={\tilde{\eta }}_y\), \(\xi ={\tilde{\xi }}\), \(\alpha _{BJ}={\tilde{\alpha }}_{BJ}\), \({\tilde{k}}^2 {\text {We}} =k_x^2 {\tilde{{\text {We}}}}\), \(k_x^2 {\text {Fr}}^2={\tilde{k}}^2{\tilde{{\text {Fr}}}}^2\), and \(k_x{\hat{h}}={\tilde{k}}{\tilde{h}}\). Using the above transformations, one can derive a similar set of perturbation equations for the two-dimensional disturbance with a normal mode solution (\(\propto \exp [i{\tilde{k}}(x-{\tilde{c}}t)]\))

$$\begin{aligned} i{\tilde{k}}{\tilde{u}}+\partial _y{\tilde{v}}= & {} 0,~~ 0 \le y \le 1,\end{aligned}$$
(A17)
$$\begin{aligned} i{\tilde{k}}(U-{\tilde{c}}){\tilde{u}}+\partial _yU{\tilde{v}}+i{\tilde{k}}{\tilde{p}} -(\partial _{yy}-{\tilde{k}}^2){\tilde{u}}/{\tilde{{\text {Re}}}}= & {} 0,~~ 0 \le y \le 1,\end{aligned}$$
(A18)
$$\begin{aligned} i{\tilde{k}}(U-{\tilde{c}}){\tilde{v}}+\partial _y{\tilde{p}}+(\partial _{yy} -{\tilde{k}}^2){\tilde{v}}/{\tilde{{\text {Re}}}}= & {} 0,~~0 \le y \le 1, \end{aligned}$$
(A19)
$$\begin{aligned} i{\tilde{k}}{\tilde{u}}_p+\partial _y{\tilde{v}}_p= & {} 0,~~ -\delta \le y \le 0,\end{aligned}$$
(A20)
$$\begin{aligned} -(1/{\tilde{\varepsilon }})i{\tilde{k}}{\tilde{c}}{\tilde{u}}_p+i{\tilde{k}}{\tilde{p}}_p +[1/({\tilde{{\text {Re}}}}\,{\tilde{{\text {Da}}}}\,{\tilde{\eta }}_x)]{\tilde{u}}_p= & {} 0,~~ -\delta \le y \le 0,\end{aligned}$$
(A21)
$$\begin{aligned} -(1/{\tilde{\varepsilon }})i{\tilde{k}}{\tilde{c}}{\tilde{v}}_p+\partial _y{\tilde{p}}_p +[{\tilde{\xi }}/({\tilde{{\text {Re}}}}\,{\tilde{{\text {Da}}}}\,{\tilde{\eta }}_y)]{\tilde{v}}_p= & {} 0,~~ -\delta \le y \le 0, \end{aligned}$$
(A22)
$$\begin{aligned} {\tilde{v}}_p= 0,{} & {} ~~\textrm{at}~~ y=-\delta ,\end{aligned}$$
(A23)
$$\begin{aligned} \partial _y{\tilde{u}}={\tilde{\alpha }}_{BJ}/\sqrt{{\tilde{{\text {Da}}}}\,{\tilde{\eta }}_x} ({\tilde{u}}-{\tilde{u}}_p),{} & {} ~~ \textrm{at}~~ y=0,\end{aligned}$$
(A24)
$$\begin{aligned} {\tilde{v}}={\tilde{v}}_p,~~{\tilde{p}}={\tilde{p}}_p,{} & {} ~~ \textrm{at}~~ y=0,\end{aligned}$$
(A25)
$$\begin{aligned} \partial _y{\tilde{u}}+i{\tilde{k}}{\tilde{v}}+{\tilde{h}}\partial _{yy}U = 0,{} & {} ~~ \textrm{at}~~ y=1,\end{aligned}$$
(A26)
$$\begin{aligned} -{\tilde{p}}+(2/{\tilde{{\text {Re}}}})\partial _y{\tilde{v}}=-{\tilde{{\text {We}}}}\, {\tilde{k}}^2{\tilde{h}}-(\cos \theta /{\tilde{{\text {Fr}}}}^2){\tilde{h}},{} & {} ~~ \textrm{at}~~ y=1,\end{aligned}$$
(A27)
$$\begin{aligned} i{\tilde{k}}(U-{\tilde{c}}){\tilde{h}}={\tilde{v}},{} & {} ~~ \textrm{at}~~ y=1, \end{aligned}$$
(A28)

where \({\tilde{k}}\) is the wavenumber and \({\tilde{c}}\) is the wave speed of the two-dimensional disturbance. Here, all ‘tilde’ quantities represent the flow variables when the infinitesimal disturbance is two-dimensional. Clearly, the Reynolds number \({\tilde{{\text {Re}}}}\) for the two-dimensional disturbance is less than the Reynolds number Re for the three-dimensional disturbance because \({\tilde{{\text {Re}}}}=(k_x/{\tilde{k}}){\text {Re}} < {\text {Re}}\), where \(k_z \ne 0\). Therefore, the modal instability corresponding to the two-dimensional infinitesimal disturbance occurs at a lower Reynolds number than that of the three-dimensional infinitesimal disturbance. In other words, compared to three-dimensional disturbance, one can infer that two-dimensional disturbance is more unstable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, A. Modal analysis of a fluid flowing over a porous substrate. Theor. Comput. Fluid Dyn. 37, 241–260 (2023). https://doi.org/10.1007/s00162-023-00654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00654-1

Keywords

Navigation