Skip to main content
Log in

Enhancement of mixed convection heat transfer in a square cavity via a freely moving elastic ring

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A freely moving elastic ring is used to enhance mixed convection heat transfer in a two-dimensional square cavity with three different Richardson (Ri) numbers of 0.1, 1.0, and 10. The multiple-relaxation time lattice Boltzmann method combined with the immersed boundary method is employed to simulate the mixed convection heat transfer and its interaction with the elastic ring in the cavity. Two different thermal conditions for the elastic ring, i.e., with and without thermal interaction, are considered. The results are given in terms of streamlines, isotherms, temperature distribution, and Nusselt (Nu) number. It was found that at the steady state, the ring accords to one of the streamlines in the cavity. In addition, for each investigated case, the Nu number decreases as the Ri number increases. Besides, the presence of the ring leads to a much higher heat transfer (Nu number) and a much earlier steady state as compared to the case with no ring. Finally, the values of the Nu number for both thermal conditions of the ring are about the same being slightly higher for the ring with thermal interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Boutra, A., Ragui, K., Benkahla, Y.K.: Numerical study of mixed convection heat transfer in a lid-driven cavity filled with a nanofluid. Mech. Ind. 16(5), 505 (2015)

  2. Boutra, A., Ragui, K., Benkahla, Y.K., Labsi, N.: Mixed convection of a Bingham fluid in differentially heated square enclosure with partitions. Theor. Found. Chem. Eng. 52(2), 286–294 (2018)

    Article  Google Scholar 

  3. Gibanov, N.S., Sheremet, M.A., Oztop, H.F., Abu-Hamdeh, N.: Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. Int. J. Heat Mass Transf. 114, 1086–1097 (2017)

    Article  Google Scholar 

  4. Khanafer, K., Aithal, S.M.: Laminar mixed convection flow and heat transfer characteristics in a lid-driven cavity with a circular cylinder. Int. J. Heat Mass Transf. 66, 200–209 (2013)

    Article  Google Scholar 

  5. Gangawane, K.M., Oztop, H.F., Abu-Hamdeh, N.: Mixed convection characteristic in a lid-driven cavity containing heated triangular block: effect of location and size of block. Int. J. Heat Mass Transf. 124, 860–875 (2018)

    Article  Google Scholar 

  6. Nithyadevi, N., Begum, A.S., Oztop, H.F., Abu-Hamdeh, N.: Mixed convection analysis in heat transfer enhancement of a nanofluid filled porous enclosure with various wall speed ratios. Int. J. Heat Mass Transf. 113, 716–729 (2017)

    Article  Google Scholar 

  7. Al-Amiri, A., Khanafer, K.: Fluid-structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall. Int. J. Heat Mass Transf. 54(17–18), 3826–3836 (2011)

    Article  MATH  Google Scholar 

  8. Khanafer, K.: Fluid-structure interaction analysis of non-Darcian effects on natural convection in a porous enclosure. Int. J. Heat Mass Transf. 58(1–2), 382–394 (2013)

    Article  Google Scholar 

  9. Jamesahar, E., Ghalambaz, M., Chamkha, A.J.: Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition. Int. J. Heat Mass Transf. 100, 303–319 (2016)

    Article  Google Scholar 

  10. Ghalambaz, M., Jamesahar, E., Ismael, M.A., Chamkha, A.J.: Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int. J. Therm. Sci. 111, 256–273 (2017)

    Article  Google Scholar 

  11. Mehryan, S.A.M., Ghalambaz, M., Ismael, M.A., Chamkha, A.J.: Analysis of fluid–solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. J. Magn. Magn. Mater. 424, 161–173 (2017)

    Article  Google Scholar 

  12. Khanafer, K., Aithal, S.M.: Mixed convection heat transfer in a lid-driven cavity with a rotating circular cylinder. Int. Commun. Heat Mass Transf. 86, 131–142 (2017)

    Article  Google Scholar 

  13. Arun, S., Satheesh, A.: Analysis of flow behavior in a two sided lid driven cavity using lattice Boltzmann technique. Alex. Eng. J. 54, 795–806 (2015)

    Article  Google Scholar 

  14. Oztop, H.F., Zhao, Z., Yu, B.: Fluid flow due to combined convection in lid-driven enclosure having a circular body. Int. J. Heat Fluid Flow 30(5), 886–901 (2009)

    Article  Google Scholar 

  15. Billah, M.M., Rahman, M.M., Sharif, U.M., Rahim, N.A., Saidur, R., Hasanuzzaman, M.: Numerical analysis of fluid flow due to mixed convection in a lid-driven cavity having a heated circular hollow cylinder. Int. Commun. Heat Mass Transf. 38(8), 1093–1103 (2011)

    Article  Google Scholar 

  16. Sivasankaran, S., Sivakumar, V., Prakash, P.: Numerical study on mixed convection in a lid-driven cavity with non-uniform heating on both sidewalls. Int. J. Heat Mass Transf. 53(19–20), 4304–4315 (2010)

    Article  MATH  Google Scholar 

  17. Waheed, M.A.: Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate. Int. J. Heat Mass Transf. 52(21–22), 5055–5063 (2009)

    Article  MATH  Google Scholar 

  18. Sun, C., Yu, B., Oztop, H.F., Wang, Y., Wei, J.: Control of mixed convection in lid-driven enclosures using conductive triangular fins. Int. J. Heat Mass Transf. 54(4), 894–909 (2011)

    Article  MATH  Google Scholar 

  19. Islam, A.W., Sharif, M.A., Carlson, E.S.: Mixed convection in a lid driven square cavity with an isothermally heated square blockage inside. Int. J. Heat Mass Transf. 55(19–20), 5244–5255 (2012)

    Article  Google Scholar 

  20. Bhattacharya, M., Basak, T., Oztop, H.F., Varol, Y.: Mixed convection and role of multiple solutions in lid-driven trapezoidal enclosures. Int. J. Heat Mass Transf. 63, 366–388 (2013)

    Article  Google Scholar 

  21. Basak, T., Sharma, P.K., Pop, I.: Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. Int. J. Therm. Sci. 48(5), 891–912 (2009)

    Article  Google Scholar 

  22. Chamkha, A.J., Selimefendigil, F., Ismael, M.A.: Mixed convection in a partially layered porous cavity with an inner rotating cylinder. Numer. Heat Transf. Part A Appl. 69(6), 659–675 (2016)

    Article  Google Scholar 

  23. Gangawane, K.M.: Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: Effect of Prandtl and Grashof numbers. Int. J. Heat Mass Transf. 105, 34–57 (2017)

    Article  Google Scholar 

  24. Gangawane, K.M., Manikandan, B.: Mixed convection characteristics in lid-driven cavity containing heated triangular block. Chin. J. Chem. Eng. 25(10), 1381–1394 (2017)

    Article  Google Scholar 

  25. Hammami, F., Souayeh, B., Ben-Cheikh, N., Ben-Beya, B.: Computational analysis of fluid flow due to a two-sided lid driven cavity with a circular cylinder. Comput. Fluids 15, 317–328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ali, F.H., Hamzah, H.K., Hussein, A.K., Jabbar, M.Y., Talebizadehsardari, P.: MHD mixed convection due to a rotating circular cylinder in a trapezoidal enclosure filled with a nanofluid saturated with a porous media. Int. J. Mech. Sci. 181, 105688 (2020)

    Article  Google Scholar 

  27. Zadeh, S.M.H., Mehryan, S.A.M., Izadpanahi, E., Ghalambaz, M.: Impacts of the flexibility of a thin heater plate on the natural convection heat transfer. Int. J. Therm. Sci. 145, 106001 (2019)

    Article  Google Scholar 

  28. Gangawane, K.M., Oztop, H.F., Ali, M.E.: Mixed convection in a lid-driven cavity containing triangular block with constant heat flux: effect of location of block. Int. J. Mech. Sci. 152, 492–511 (2019)

    Article  Google Scholar 

  29. Dadvand, A., Baghalnezhad, M., Mirzaee, I., Khoo, B.C., Ghoreishi, S.: An immersed boundary-lattice Boltzmann approach to study the dynamics of elastic membranes in viscous shear flows. J. Comput. Sci. 5, 709–718 (2014)

    Article  MathSciNet  Google Scholar 

  30. Huang, R., Wu, H.: An immersed boundary-thermal lattice Boltzmann method for solid-liquid phase change. J. Comput. Phys. 227, 305–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lallemand, P., Luo, L.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6564 (2000)

    Article  MathSciNet  Google Scholar 

  32. Luo, L.S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E 5(83), 056710 (2011)

    Article  Google Scholar 

  33. Li, Z., Yang, M., Zhang, Y.: Double MRT thermal lattice Boltzmann method for simulating natural convection of low Prandtl number fluids. Int. J. Numer. Methods Heat Fluid Flow 26(6), 1889–1909 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Contrino, D., Lallemand, P., Asinari, P., Luo, L.S.: Lattice-Boltzmann simulations of the thermally driven 2D square cavity at high Rayleigh numbers. J. Comput. Phys. 275, 257–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dubois, F., Lin, C.A., Tekitek, M.M.: Anisotropic thermal lattice Boltzmann simulation of 2D natural convection in a square cavity. Comput. Fluids 124, 278–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, J., Wang, D., Lallemand, P., Luo, L.S.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math. Appl. 65(2), 262–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ginzburg, I.: Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice Boltzmann schemes for anisotropic advection-diffusion equation. Commun. Comput. Phys. 11(5), 1439–1502 (2012)

    Article  MATH  Google Scholar 

  38. Mohamad, A.A.: Lattice Boltzmann Method, p. 195. Springer, New York (2011)

    Book  Google Scholar 

  39. Liu, C.-H., Lin, K.-H., Mai, H.-C., Lin, C.-A.: Thermal boundary conditions for thermal lattice Boltzmann simulations. Comput. Math. Appl. 59, 2178–2193 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S., Matsumoto, Y.: A full Eulerian finite difference approach for solving fluid–structure coupling problems. J. Comput. Phys. 230(3), 596–627 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nayak, R.K., Bhattacharyya, S., Pop, I.: Numerical study on mixed convection and entropy generation of Cu-water nanofluid in a differentially heated skewed enclosure. Int. J. Heat Mass Transf. 85, 620–634 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolrahman Dadvand.

Ethics declarations

Data availability

The data and code used in this work are currently proprietary and confidential; it will be considered for public release in the future.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseyni, A., Dadvand, A., Rezazadeh, S. et al. Enhancement of mixed convection heat transfer in a square cavity via a freely moving elastic ring. Theor. Comput. Fluid Dyn. 37, 83–104 (2023). https://doi.org/10.1007/s00162-022-00637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-022-00637-8

Keywords

Navigation