Skip to main content
Log in

LBM study of natural convection heat transfer from a porous cylinder in an enclosure

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Natural convection heat transfer from a porous cylinder put at various positions in a square, cooled enclosure, with air as the working fluid, is investigated in this work. The following setups are taken into account: The hot cylinder is placed in the middle of the enclosure, near the bottom, top, right sides, along diagonal as top-diagonal and bottom-diagonal. The cylinder and the enclosure walls are kept hot and cold, respectively. The lattice Boltzmann method is used to perform a numerical analysis for Rayleigh number \(10^{4}\le \) Ra \(\le 10^{6}\) and Darcy number \(10^{-6}\le \) Da \(\le 10^{-2}\). The results are plotted as streamlines, isotherms, and local and mean Nusselt number values. The amount of heat transported from the heated porous cylinder is determined by varying Ra, Da, and the cylinder location. Even at a lower Rayleigh number (\(10^{4}\)), the average Nusselt number grows by nearly 70 % as the cylinder moves from the centre to the bottom and 105% as it moves to bottom-diagonal location when \({Da}=10^{-2}\). At Ra \(=10^{6}\) and Da \(=10^{-2}\), the heat transfer rate of the cylinder located near the corner of the enclosure at the bottom wall increases by approximately 33% when compared to the case of the cylinder in the centre. Convective effects are more noticeable when the cylinder is positioned towards the enclosure’s bottom wall. This research is applicable to electronic cooling applications in which a collection of electronic components is arranged in a circular pattern inside a cabinet.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({C}_{1}\), \({C}_{2}\) :

Binary constants

D :

Diameter of cylinder (m)

\(c_\mathrm{F}\) :

Non-dimensional Forchheimer term

\(\delta \) :

Distance from centre (\(\delta {x}\) or \(\delta y\) in x and y direction)

\(c_{s}\) :

Speed of sound (\(\hbox {ms}^{-1}\))

G:

Body force due to gravity (N)

Da :

Darcy number \(\frac{K}{D^{2}}\)

N :

Number of lattices on the cylinder

\(d_{p}\) :

Particle diameter (m)

\({Nu}_\mathrm{L}\) :

Local Nusselt number \(\frac{\partial \theta }{\partial n}\)

\(e_{i}\) :

Discrete lattice velocity in direction i, \(\frac{\Delta x_{i}}{\Delta t}\)

Nu :

Nusselt number \(\frac{hL}{K}\)

F :

Body force due to presence of the porous medium (N)

p :

Dimensionless pressure \(\frac{p*}{\rho u_{\infty }^{2}}\)

\(F_{i}\) :

Total force term due to porous medium (N)

Pr :

Prandtl number \(\frac{\nu }{\alpha }\)

\(F_{b}\) :

Boussinesq force term (N)

Ra :

Rayleigh number \(\frac{g\beta \Delta TL^{3}}{\alpha \nu }\)

g:

Gravitational acceleration (ms\(^{-2}\))

u :

Non-dimensional x-component velocity (ms\(^{-1}\))

\(f_{i}\) :

Particle distribution function along ith link direction

v :

Non-dimensional y-component velocity (ms\(^{-1}\))

\(f_{i}^{eq}\) :

Equilibrium distribution function along ith link direction

U:

Actual velocity (ms\(^{-1}\))

V:

Auxiliary velocity (ms\(^{-1}\))

\(g_{i}\) :

Temperature distribution function along ith link direction

\(w_{i}\) :

Weighing factor in direction i

\(g_{i}^{eq}\) :

Equilibrium distribution function of temperature ith link direction

x,y :

Non-dimensional horizontal and vertical coordinate

L :

Length of enclosure (m)

\(x^{*}\) ,y \(^{*}\) :

Dimensional horizontal and vertical coordinate

\(\rho \) :

Fluid density (kg m\(^{-3}\))

\(\epsilon \) :

Porosity

\(\tau \) :

Dimensionless relaxation time for density

\(\nu \) :

Fluid kinematic viscosity (m\(^{2}\)s\(^{-1}\))

\(\tau '\) :

Dimensionless relaxation time for temperature

\(\mu \) :

Fluid dynamic viscosity (N  s  m\(^{-2}\))

t :

Non-dimensional time \(\frac{t{*u}_{\infty }}{H}\)

\(\varLambda \) :

Viscosity ratio \(\frac{\mu _{e}}{\mu }\)

\(\Delta t\) :

Time step (s)

\(\alpha \) :

Thermal diffusivity (m\(^{2}\)s\(^{-1}\))

\(\Delta x\) :

Lattice space

\(\beta \) :

Thermal expansion coefficient \(\frac{Ra\, \alpha \, \nu }{\, g\Delta TL^{3}}\) (K\(^{-1}\))

\(\theta \) :

Dimensionless temperature \(\frac{T-T_{\infty }}{T_{w}-\, T_{\infty }}\)

\(\sigma \) :

Thermal conductivity ratio

avg:

Average

w:

Wall

\(\infty \) :

Far field value

e:

Effective

\(\circ \) :

Inlet value

f:

Fluid

M:

Mean value

l:

Local value of variable

i :

Lattice link direction

\(*\) :

Dimensional form of variables

References

  1. Dhinakaran, S., Ponmozhi, J.: Heat transfer from a permeable square cylinder to a flowing fluid. Energy Convers. Manag. 52(5), 2170–2182 (2011). https://doi.org/10.1016/j.enconman.2010.12.027

    Article  Google Scholar 

  2. House, J.M., Beckermann, C., Smith, T.F.: Effect of a centred conducting body on natural convection heat transfer in an enclosure. Numer. Heat Transf. 18(2), 213–225 (1990). https://doi.org/10.1080/10407789008944791

    Article  Google Scholar 

  3. Alsabery, A.I., Sheremet, M.A., Chamkha, A.J., Hashim, I.: Conjugate natural convection of Al2O3–water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. Int. J. Mech. Sci. 136, 200–219 (2018). https://doi.org/10.1016/j.ijmecsci.2017.12.025

    Article  Google Scholar 

  4. Moukalled, F., Acharya, S.: Natural convection in the annulus between concentric horizontal circular and square cylinders. J. Thermophys. Heat Transf. 10(3), 524–531 (1996). https://doi.org/10.2514/3.820

    Article  Google Scholar 

  5. Roychowdhury, D.G., Das, S.K., Sundararajan, T.: Numerical simulation of natural convective heat transfer and fluid flow around a heated cylinder inside an enclosure. Heat Mass Transf. 38(7), 565–576 (2002). https://doi.org/10.1007/s002310100210

    Article  Google Scholar 

  6. Nabavizadeh, S.A., Talebi, S., Sefid, M., Nourmohammadzadeh, M.: Natural convection in a square cavity containing a sinusoidal cylinder. Int. J. Therm. Sci. 51, 112–120 (2012). https://doi.org/10.1016/j.ijthermalsci.2011.08.021

    Article  Google Scholar 

  7. Jami, M., Mezrhab, A., Bouzidi, M., Lallemand, P.: Lattice Boltzmann method applied to the laminar natural convection in an enclosure with a heat-generating cylinder conducting body. Int. J. Therm. Sci. 46(1), 38–47 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.03.010

    Article  MATH  Google Scholar 

  8. Jami, M., Mezrhab, A., Naji, H.: Numerical study of natural convection in a square cavity containing a cylinder using the lattice Boltzmann method. Eng. Comput. (2008). https://doi.org/10.1108/02644400810881400

    Article  MATH  Google Scholar 

  9. Kim, B.S., Lee, D.S., Ha, M.Y., Yoon, H.S.: A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int. J. Heat Mass Transf. 51(7–8), 1888–1906 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.033

    Article  MATH  Google Scholar 

  10. Hussain, S.H., Hussein, A.K.: Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations. Int. Commun. Heat Mass Transf. 37(8), 1115–1126 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2010.05.016

    Article  Google Scholar 

  11. Yoon, H.S., Ha, M.Y., Kim, B.S., Yu, D.H.: Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of \(10^{7}\). Phys. Fluids 21(4), 047101 (2009). https://doi.org/10.1063/1.3112735

    Article  MATH  Google Scholar 

  12. Kang, D.H., Ha, M.Y., Yoon, H.S., Choi, C.: Bifurcation to unsteady natural convection in square enclosure with a circular cylinder at Rayleigh number of \(10^{7}\). Int. J. Heat Mass Transf. 64, 926–944 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.002

    Article  Google Scholar 

  13. Nithiarasu, P., Seetharamu, K.N., Sundararajan, T.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40(16), 3955–3967 (1997). https://doi.org/10.1016/S0017-9310(97)00008-2

    Article  MATH  Google Scholar 

  14. Vijaybabu, T.R.: Influence of permeable circular body and CuO–H\(_{2}\)O nanofluid on buoyancy-driven flow and entropy generation. Int. J. Mech. Sci. 166, 105240 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105240

    Article  Google Scholar 

  15. Hu, J.T., Mei, S.J.: Combined thermal and moisture convection and entropy generation in an inclined rectangular enclosure partially saturated with porous wall: nonlinear effects with Soret and Dufour numbers. Int. J. Mech. Sci. 199, 106412 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106412

    Article  Google Scholar 

  16. Lauriat, G., Prasad, V.: Non-Darcian effects on natural convection in a vertical porous enclosure. Int. J. Heat Mass Transf. 32, 2135–2148 (1989). https://doi.org/10.1016/0017-9310(89)90120-8

    Article  Google Scholar 

  17. Chen, X.B., Yu, P., Winoto, S.H., Low, H.T.: Free convection in a porous wavy cavity based on the Darcy–Brinkman–Forchheimer extended model. Numer. Heat Transf. Part A 52, 377–397 (2007). https://doi.org/10.1080/10407780701301595

    Article  Google Scholar 

  18. Kumari, M., Nath, G.: Unsteady natural convection from a horizontal annulus filled with a porous medium. Int. J. Heat Mass Transf. 51, 5001–5007 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.030

    Article  MATH  Google Scholar 

  19. Mohamad, A.A.: Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. Springer, London (2011). https://doi.org/10.1007/978-1-4471-7423-3

    Book  MATH  Google Scholar 

  20. Lahmer, E.B., Admi, Y., Moussaoui, M.A., Mezrhab, A.: Improvement of the heat transfer quality by air cooling of three-heated obstacles in a horizontal channel using the lattice Boltzmann method. Heat Transf. (2022). https://doi.org/10.1002/htj.22481

    Article  Google Scholar 

  21. Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66(3), 036304 (2002). https://doi.org/10.1103/PhysRevE.66.036304

    Article  Google Scholar 

  22. Kozeny, J.: Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss., Wien, Royal Academy of Science, Vienna, Proc. Class I 136(2a): 271–306 (1927)

  23. Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  24. Carman, P.C.: Flow of Gases Through Porous Media. Butterworths Scientific Publications, New York (1956)

Download references

Acknowledgements

One of the authors (S.D) acknowledges the funds received from the Science and Engineering Research Board (SERB), a statutory body of Department of Science & Technology (DST), Government of India, through a Project Grant (File no. MTR/2019/001440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhinakaran.

Ethics declarations

Data availability

We confirm that the results file will be made available to readers upon request. Please contact the corresponding authors if you require the data.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shruti, B., Alam, M.M., Parkash, A. et al. LBM study of natural convection heat transfer from a porous cylinder in an enclosure. Theor. Comput. Fluid Dyn. 36, 943–967 (2022). https://doi.org/10.1007/s00162-022-00632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-022-00632-z

Keywords

Navigation