Skip to main content
Log in

An integral equation for solitary surface gravity waves of finite amplitude

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of a solitary surface gravity wave in a flow of an inviscid incompressible fluid in a channel of constant depth is considered. The problem is solved in two-dimensional formulation. The wave moves at a constant speed. In a coordinate system moving along with the wave, the flow is stationary. Its mathematical model is reduced to a boundary value problem for a strip in the complex potential plane. This is converted to a boundary value problem for a half-plane by conformal mapping. The solution is obtained using a Cauchy-type integral for the density of which a nonlinear integral equation is derived. Its solution is found with the Galerkin method and the Newton–Raphson technique. The calculated results are compared with the experimental data and the calculations by other researchers. The lower limit of the speed of a solitary wave is found. The advantage of the proposed method is the simplicity of the resulting integral equation, which makes it possible to effectively apply numerical methods of solution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Amick, C.J., Toland, J.F.: On solitary water-waves of finite amplitude. Arch. Ration. Mech. Anal. 76, 9–95 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boussinesq, J.: Théorie de l’intumescence liquide appelee onde solitaire ou de translation se propageant dans un canal rectangulaire. C.R. Acad. Sci. Paris 72, 755–759 (1871)

    MATH  Google Scholar 

  3. Bukreev, V.I.: Correlation between theoretical and experimental solitary waves. J. Appl. Mech. Tech. Phys. 40, 399–406 (1999)

    Article  Google Scholar 

  4. Byatt-Smith, J.G.B.: An exact integral equation for steady surface waves. Proc. R. Soc. Lond. (A) 315, 405–418 (1970)

    MathSciNet  Google Scholar 

  5. Byatt-Smith, J.G.B., Longuet-Higgins, M.S.: On the speed and profile of steep solitary waves. Proc. R. Soc. Lond. (A) 350, 175–189 (1976)

    MATH  Google Scholar 

  6. Clamond, D., Dutykh, D.: Fast accurate computation of the fully nonlinear solitary surface gravity waves. Comput. Fluids 84, 35–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, H.: Complex Analysis with Applications in Science and Engineering. Springer, New York (2007)

    Book  MATH  Google Scholar 

  8. Constantin, A., Escher, J., Hsu, H.-C.: Pressure beneath a solitary water wave: mathematical theory and experiments. Arch. Ration. Mech. Anal. 201, 251–269 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daily, J.W., Stephan, J.R.: Characteristics of the solitary wave. Am. Soc. Civ. Eng. Trans. 118, 575–587 (1953)

    Article  Google Scholar 

  10. Duan, W.Y., Wang, Z., Zhao, B.B., Ertekin, R.C., Kim, J.W.: Steady solution of the velocity field of steep solitary waves. Appl. Ocean Res. 73, 70–79 (2018)

    Article  Google Scholar 

  11. Dutykh, D., Clamond, D.: Efficient computation of steady solitary gravity waves. Wave Motion 51, 86–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, W.A.B., Ford, M.J.: An exact integral equation for solitary waves (with new numerical results for some ‘internal’ properties). Proc. R. Soc. Lond. (A) 452, 373–390 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fenton, J.: A ninth-order solution for the solitary wave. J. Fluid Mech. 53, 257–271 (1972)

    Article  MATH  Google Scholar 

  14. Fikhtengol’ts, G.M.: The Fundamentals of Mathematical Analysis, vol. 1. Pergamon, New York (1965)

    MATH  Google Scholar 

  15. Friedrichs, K.O., Hyers, D.H.: The existence of solitary waves. Commun. Pure Appl. Math. 7, 517–550 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (2007)

    MATH  Google Scholar 

  17. Hunt, J.N.: On the solitary wave of finite amplitude. La Houille Blanche 2, 197–203 (1955)

    Article  Google Scholar 

  18. Hunter, J.K., Vanden-Broeck, J.-M.: Accurate computations for steep solitary waves. J. Fluid Mech. 136, 63–71 (1983)

    Article  MATH  Google Scholar 

  19. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Interscience Publishers, New York (1958)

    MATH  Google Scholar 

  20. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. Dover Publications, New York (2000)

    MATH  Google Scholar 

  21. Krteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 5(39), 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laitone, E.V.: The second approximation to cnoidal and solitary waves. J. Fluid Mech. 9, 430–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  24. Lavrentiev, M.A.: A contribution to the theory of long waves. Proc. Math. Inst. Acad. Sci. Ukraine SSR 8, 13–69 (1946). (in Russian)

    Google Scholar 

  25. Lenau, C.W.: The solitary wave of maximum amplitude. J. Fluid Mech. 26, 309–320 (1966)

    Article  MATH  Google Scholar 

  26. Long, R.R.: Solitary waves in the one- and two-fluid systems. Tellus 8, 460–471 (1956)

    Article  Google Scholar 

  27. Longuet-Higgins, M.S.: On the mass, momentum, energy and circulation of a solitary wave. Proc. R. Soc. Lond. (A) 337, 1–13 (1974)

    MathSciNet  MATH  Google Scholar 

  28. Longuet-Higgins, M.S., Fenton, J.D.: On the mass, momentum, energy and circulation of a solitary wave II. Proc. R. Soc. Lond. (A) 340, 471–493 (1974)

    MathSciNet  MATH  Google Scholar 

  29. McCowan, S.: On the solitary wave. Phil. Mag. 5(32), 45–58 (1891)

    Article  MATH  Google Scholar 

  30. Milne-Thomson, L.M.: An exact integral equation for the solitary wave. Rev. Roum. Sci. Techn.-Mec. Appl. 9, 1189–1194 (1964)

    MATH  Google Scholar 

  31. Milne-Thomson, L.M.: Theoretical Hydrodynamics, 5th edn. Macmillan, London (1968)

    Book  MATH  Google Scholar 

  32. Nekrasov, A.I.: On waves of permanent type. Izv. Ivanovo-Voznesensk. Politekhn. Inst. 3, 52–65 (1921). ((in Russian))

    Google Scholar 

  33. Packham, B.A.: The theory of symmetrical gravity waves of finite amplitude II. Solitary wave. Proc. R. Soc. Lond. (A) 213, 238–249 (1952)

    MathSciNet  MATH  Google Scholar 

  34. Pennell, S.A.: On a series expansion for the solitary wave. J. Fluid Mech. 179, 557–561 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pennell, S.A., Su, C.H.: A seventeenth-order series expansion for the solitary wave. J. Fluid Mech. 149, 431–443 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rayleigh, J.W.: On waves. Phil. Mag. 5(1), 257–279 (1876)

    MATH  Google Scholar 

  37. Russell, J.S.: Report on waves. Brit. Assoc. Rep. 13, 311–390 (1845)

    Google Scholar 

  38. Starr, V.P.: Momentum and energy integrals for gravity waves of finite height. J. Mar. Res. 6, 175–193 (1947)

    MathSciNet  Google Scholar 

  39. Stoker, J.J.: Water Waves. Interscience Publishers, New York (1957)

    MATH  Google Scholar 

  40. Tanaka, M.: The stability of solitary waves. Phys. Fluids 29, 650–655 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. Toland, J.F.: Stokes waves. Topological methods in nonlinear analysis. J. Jul. Sch. Cent. 7, 1–48 (1996)

    MATH  Google Scholar 

  42. Weinstein, A.: Sur la vitesse de propagation de l’onde solitaire. Rend. Accad. Lincei 6(3), 463–468 (1926)

    MATH  Google Scholar 

  43. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, Oxford (1965)

    MATH  Google Scholar 

  44. Williams, J.M.: Limiting gravity waves in water of finite depth. Phil. Trans. R. Soc. Lond. (A) 302, 139–188 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, T.Y., Kao, J., Zhang, J.E.: A unified intrinsic functional expansion theory for solitary waves. Acta Mech. Sinica 21, 1–15 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yamada, H.: On the highest solitary wave. Rep. Res. Inst. Appl. Mech. Kyushu Univ. 5, 53–67 (1957)

    MathSciNet  Google Scholar 

Download references

Funding

The work submitted for publication did not receive financial support from anyone. No researchers other than the author participated in it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor M. Lavit.

Ethics declarations

Data availability

Software appendices to the paper with instructions on how to use them are available at: https://drive.google.com/drive/folders/1gNnRHoqMZ1xEeiZltODz7CBr4cCAHDHV?usp=sharing. These software applications allow you to get all the numerical results given in the paper.

Additional information

Communicated by Ivan Egorov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavit, I.M. An integral equation for solitary surface gravity waves of finite amplitude. Theor. Comput. Fluid Dyn. 36, 821–844 (2022). https://doi.org/10.1007/s00162-022-00620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-022-00620-3

Keywords

Navigation