Skip to main content
Log in

Variational principle and continuous dependence results on the generalized poro-thermoelasticity theory with one relaxation parameter

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The present work is devoted to a study of the generalized poro-thermoelasticity theory and aims to derive the variational principle and continuous dependence results in the context of this theory. The basic field equations are considered for an isotropic and homogeneous fluid-saturated poro-thermoelastic medium. With the concept of incorporating initial conditions into the field equations, an alternative characterization of the present mixed initial-boundary value problem is presented. By taking into account of this alternative characterization, a convolution type variational principle is derived in the context of this generalized poro-thermoelasticity theory. Further, a continuous dependence result of solution on initial data and external supply terms (heat source and body force) is established. Uniqueness of solution of the present problem is also shown to be followed from this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\beta \) :

Porosity of the material

\(\sigma _{ij}\) :

Stress components for the solid phase

\(\sigma \) :

Stress for the fluid phase

\(b_{i}^{\mathrm{s}}, b_{i}^{\mathrm{f}}\) :

Body force of the solid and the fluid phases

\(u_{i}\) :

\(i{\mathrm{th}}\) displacement component of the solid phase

\(U_{i}\) :

\(i{\mathrm{th}}\) displacement component of the fluid phase

\(\rho ^{s*}, \rho ^{f*}\) :

Density of the solid and fluid phases

\(\rho ^{\mathrm{s}}\) :

\(\rho ^{\mathrm{s}}=\left( 1-\beta \right) \rho ^{s*},\) density of the solid phase per unit volume of bulk

\(\rho ^{\mathrm{f}}\) :

\(\rho ^{\mathrm{f}}=\beta \rho ^{f*}\), density of the fluid phase per unit volume of bulk

\(\rho \) :

\(\rho =\rho ^{\mathrm{s}}+\rho ^{\mathrm{f}}\), density of the aggregate

\(\rho _{11}\) :

\(\rho _{11}=\rho ^{\mathrm{s}}-\rho _{12}\), mass coefficient of the solid phase

\(\rho _{22}\) :

\(\rho _{22}=\rho ^{\mathrm{f}}-\rho _{12}\), mass coefficient of the fluid phase

\(\rho _{12}\) :

Coefficient of dynamics coupling

\(h^{\mathrm{s}}, h^{\mathrm{f}}\) :

Heat source in the solid and the fluid phases

\(q_{i}^{\mathrm{s}}, q_{i}^{\mathrm{f}}\) :

Heat flux for the solid and the fluid phases

\(\epsilon _{ij}\) :

Strain component of the solid phase

\(\epsilon \) :

Strain component of the fluid phase

\(C_{E}^{\mathrm{s}}, C_{E}^{\mathrm{f}}\) :

Specific heat at constant strain of the solid and the fluid phases

\(C_{E}^{\mathrm{sf}}\) :

Couplings of specific heat between the phases

\(\eta ^{\mathrm{s}}\) :

Entropy for the solid phase per unit mass of aggregate

\(\eta ^{\mathrm{f}}\) :

Entropy for the fluid phase per unit mass of aggregate

\(k^{\mathrm{s}}, k^{\mathrm{f}}\) :

Thermal conductivity of the solid and the the fluid phases

\(\alpha ^{\mathrm{s}}\) :

Coefficient of thermal expansion of the solid phase

\(\alpha ^{\mathrm{f}}\) :

Coefficient of thermal expansion of the fluid phase

\(\alpha ^{fs}, \alpha ^{\mathrm{sf}}\) :

Thermoelastic couplings between the solid and fluid phases

\(\tau _{0}^{\mathrm{s}}\) :

Relaxation time of the solid phase

\(\tau _{0}^{\mathrm{f}}\) :

Relaxation time of the fluid phase

\(\theta ^{\mathrm{s}}\) :

\(\theta ^{\mathrm{s}}=T^{\mathrm{s}}-T_{0}\), temperature increment of the solid phase

\(\theta ^{\mathrm{f}}\) :

\(\theta ^{\mathrm{f}}=T^{\mathrm{f}}-T_{0}\), temperature increment of the fluid phase

\(T_{0}\) :

Reference temperature

\(\lambda ,\mu ,R, Q\) :

Poroelastic coefficients

P:

\(P=3\lambda +2\mu \)

\(F_{11}\) :

\(F_{11}=\rho C_{E}^{\mathrm{s}}\)

\(F_{22}\) :

\(F_{22}=\rho C_{E}^{\mathrm{f}}\)

\(R_{11}\) :

\(R_{11}=\alpha ^{\mathrm{s}}P+\alpha ^{fs}Q\)

\(R_{22}\) :

\(R_{22}=\alpha ^{\mathrm{f}}R+3\alpha ^{\mathrm{sf}}Q\)

\(R_{12}\) :

\(R_{12}=\alpha ^{\mathrm{f}}Q+\alpha ^{\mathrm{sf}}P\)

\(R_{21}\) :

\(R_{21}=3\alpha ^{\mathrm{s}}Q+\alpha ^{fs}R\)

References

  1. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I: low-frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  2. Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasticity. Bull. Seismol. Soc. Am. 53(4), 783–788 (1963)

    Article  Google Scholar 

  3. Biot, M.A.: Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am. 34(9A), 1254–1264 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zolotarev, P.P.: The equations of thermoelasticity for fluid-saturated porous media. Inzh. Zh. English translation in Engineering Journal 5(3), 425–436 (1965)

    Google Scholar 

  5. Pecker, C., Deresiewicz, H.: Thermal effects on wave propagation in liquid-filled porous media. Acta Mech. 16(1–2), 45–64 (1973)

    Article  Google Scholar 

  6. McTigue, D.F.: Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. Solid Earth 91(B9), 9533–9542 (1986)

    Article  Google Scholar 

  7. Kurashige, M.: A thermoelastic theory of fluid-filled porous materials. Int. J. Solids Struct. 25(9), 1039–1052 (1989)

    Article  Google Scholar 

  8. Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14(2), 227–241 (1976)

    Article  ADS  Google Scholar 

  9. Wang, Y., Papamichos, E.: Conductive heat flow and thermally induced fluid flow around a well bore in a poroelastic medium. Water Resour. Res. 30(12), 3375–3384 (1994)

    Article  ADS  Google Scholar 

  10. Li, X., Cui, L., Roegiers, J.C.: Thermoporoelastic modelling of wellbore stability in non-hydrostatic stress field. Int. J. Rock Mech. Min. Sci. 4(35), 584 (1998)

    Article  Google Scholar 

  11. Wang, H.F.: Theory of linear poroelasticity with applications to geomechanics and hydrogeology, vol. 2. Princeton University Press, Princeton (2000)

    Google Scholar 

  12. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  ADS  Google Scholar 

  14. Youssef, H.M.: Theory of generalized porothermoelasticity. Int. J. Rock Mech. Min. Sci. 44(2), 222–227 (2007)

    Article  Google Scholar 

  15. Sharma, M.D.: Wave propagation in thermoelastic saturated porous medium. J. Earth Syst. Sci. 117(6), 951 (2008)

    Article  ADS  Google Scholar 

  16. Singh, B.: On propagation of plane waves in generalized porothermoelasticity. Bull. Seismol. Soc. Am. 101(2), 756–762 (2011)

    Article  Google Scholar 

  17. Sherief, H.H., Hussein, E.M.: A mathematical model for short-time filtration in poroelastic media with thermal relaxation and two temperatures. Transp. Porous Med. 91(1), 199–223 (2012)

    Article  MathSciNet  Google Scholar 

  18. Marin, M.: An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51(5), 1127–1133 (2016)

    Article  MathSciNet  Google Scholar 

  19. Ezzat, M., Ezzat, S.: Fractional thermoelasticity applications for porous asphaltic materials. Pet. Sci. 13(3), 550–560 (2016)

    Article  Google Scholar 

  20. Carcione, J.M., Cavallini, F., Wang, E., Ba, J., Fu, L.Y.: Physics and simulation of wave propagation in linear thermoporoelastic media. J. Geophys. Res. Solid Earth 124(8), 8147–8166 (2019)

    Article  ADS  Google Scholar 

  21. Wei, J., Fu, L.Y.: The fundamental solution of poro-thermoelastic theory. In: 2nd SEG Rock Physics Workshop: Challenges in Deep and Unconventional Oil/Gas Exploration . Society of Exploration Geophysicists, pp 52-52 (2020)

  22. Shivay, O.N., Mukhopadhyay, S.: A porothermoelasticity theory for anisotropic medium. Contin. Mech. Thermodyn. 33, 2515–2532 (2021). https://doi.org/10.1007/s00161-021-01030-2

    Article  ADS  MathSciNet  Google Scholar 

  23. Shivay, O.N., Mukhopadhyay, S.: Variational principle and reciprocity theorem on the temperature-rate-dependent poro-thermoelasticity theory. Acta Mech. 232(9), 3655–3667 (2021). https://doi.org/10.1007/s00707-021-02996-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Nickell, R.E., Sackman, J.L.: Approximate solutions in linear, coupled thermoelasticity. J. Appl. Mech. 35, 255–266 (1968)

    Article  ADS  Google Scholar 

  25. Aboustit, B.L., Advani, S.H., Lee, J.K.: Variational principles and finite element simulations for thermo-elastic consolidation. Int. J. Numer. Anal. Methods Geomech. 9, 49–65 (1985)

    Article  Google Scholar 

  26. Gladysz, J.: Approximate one-dimensional solution in linear thermo-elasticity with finite wave speeds. J. Therm. Stress. 9, 45–57 (1986)

    Article  Google Scholar 

  27. Darrall, B.T., Dargush, G.F.: Variational principle and time-space finite element method for dynamic thermoelasticity based on mixed convolved action. Eur. J. Mech. A/Solids 71, 351–364 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Nickell, R., Sackman, J.: Variational principles for linear coupled thermoelasticity. Q. Appl. Math. 26(1), 11–26 (1968)

    Article  MathSciNet  Google Scholar 

  29. Iesan, D.: On some reciprocity theorems and variational theorems in linear dynamic theories of continuum mechanics. Memorie dell’ Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. Ser 4(17), 17–37 (1974)

    MathSciNet  MATH  Google Scholar 

  30. Sherief, H.H., Dhaliwal, R.S.: A uniqueness theorem and a variational principle for generalized thermoelasticity. J. Therm. Stress. 3(2), 223–230 (1980)

    Article  Google Scholar 

  31. Chandrasekharaiah, D.S.: Variational and reciprocal principles in micropolar thermoelasticity. Int. J. Eng. Sci. 25(1), 55–63 (1987)

    Article  MathSciNet  Google Scholar 

  32. Youssef, H.M., Al-Lehaibi, E.A.: Variational principle of fractional order generalized thermoelasticity. Appl. Math. Lett. 23(10), 1183–1187 (2010)

    Article  MathSciNet  Google Scholar 

  33. Lebon, G.: Variational principles in thermomechanics. Recent Dev. Thermomech. Solids 282, 221–415 (1980)

    Google Scholar 

  34. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford, UK (2010)

    MATH  Google Scholar 

  35. Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Gurtin’s variational principle in thermoelasticity without energy dissipation of dipolar bodies. Contin. Mech. Thermodyn. 32, 1685–1694 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  36. Bem, Z.: Existence of a generalized solution in thermoelasticity with one relaxation time. J. Therm. Stress. 5(2), 195–206 (1982)

    Article  MathSciNet  Google Scholar 

  37. Marin, M.: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32(8), 1229–1240 (1994)

    Article  MathSciNet  Google Scholar 

  38. Marin, M., Öchsner, A., Ellahi, R., Bhatti, M.M.: A semigroup of contractions in elasticity of porous bodies. Contin. Mech. Thermodyn. 33, 2027–2037 (2021). https://doi.org/10.1007/s00161-021-00992-7

    Article  ADS  MathSciNet  Google Scholar 

  39. Iesan, D.: On the theory of thermoelasticity without energy dissipation. J. Therm. Stress. 21, 295–307 (1998)

    Article  MathSciNet  Google Scholar 

  40. Chirita, S.: On the uniqueness and continuous data dependence of solutions in the theory of swelling porous thermoelastic soils. Int. J. Eng. Sci. 41(20), 2363–2380 (2003)

    Article  MathSciNet  Google Scholar 

  41. El-Karamany, A.S., Ezzat, M.A.: On the three-phase-lag linear micropolar thermoelasticity theory. Eur. J. Mech. A/Solids 40, 198–208 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. Marin, M., Ochsner, A., Taus, D.: On structural stability for an elastic body with voids having dipolar structure. Contin. Mech. Thermodyn. 32, 147–160 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  43. Gurtin, M.E.: Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal. 16(1), 34–50 (1964)

    Article  MathSciNet  Google Scholar 

  44. Green, A.E., Laws, N.: On the entropy production inequality. Arch. Ration. Mech. Anal. 45(1), 47–53 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the constructive suggestions by reviewers and editor to improve the quality of the present paper. One of the authors (Komal Jangid) thankfully acknowledges the full financial assistance from the Council of Scientific and Industrial Research (CSIR), India, as the JRF fellowship (File. No. 09/1217(0057)/2019-EMR-I) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komal Jangid.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangid, K., Mukhopadhyay, S. Variational principle and continuous dependence results on the generalized poro-thermoelasticity theory with one relaxation parameter. Continuum Mech. Thermodyn. 34, 867–881 (2022). https://doi.org/10.1007/s00161-022-01101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01101-y

Keywords

Navigation