Skip to main content
Log in

Thermodynamically consistent multiscale formulation of a thermo-mechanical problem with phase transformations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A multiscale framework for thermo-mechanical analysis with phase transformations is proposed in this work. The formulation covers those cases including coupled constitutive equations for simulating thermo-mechanical processes considering phase transformation phenomena. The general case of temperature- and phase-dependent procedures, involving nonlinear plasticity concepts, is considered as main framework in order to formulate the material dissipation at both micro- and macroscopic level of observation. Thermodynamic consistency conditions for computational up/downscaling between micro- and macroscales are presented, with special focus on phase transformation phenomena, for both the mechanical and thermal homogenization. Classical Coleman–Gurtin thermodynamics is employed at the microscale, whereas an extended framework is considered at the macroscale due to the temperature gradient dependency of the macro stress. The multiscale procedure is based on a variational approach largely discussed in the literature. The overall coupled process at both micro- and macroscopic scales, averaging criteria, thermal, mechanical and phase change constitutive expressions, as well as the corresponding homogenization rules, are discussed and derived in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, Q.: On the modeling of thermo-mechanical phase transformations in solids. J. Elast. 32(1), 61–91 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Silva, E.P., Pacheco, P.M.C.L., Savi, M.A.: On the thermo-mechanical coupling in austenite-martensite phase transformation related to the quenching process. Int. J. Solids Struct. 41(3), 1139–1155 (2004)

    Article  MATH  Google Scholar 

  3. Simencio Otero, R., Canale, L., Said Schicchi, D., Agaliotis, E., Totten, G., Sánchez Sarmiento, G.: Epoxidized soybean oil: evaluation of oxidative stabilization and metal quenching heat transfer performance. J. Mater. Eng. Perform. 22(7), 1937–1944 (2013)

    Article  Google Scholar 

  4. Hazar, S., Alfredsson, B., Lai, J.: Mechanical modeling of coupled plasticity and phase transformation effects in a martensitic high strength bearing steel. Mech. Mater. 117, 41–57 (2018)

    Article  Google Scholar 

  5. Faheem, A., Ranzi, G., Fiorito, F., Lei, C.: A numerical study on the thermal performance of night ventilated hollow core slabs cast with micro-encapsulated pcm concrete. Energy Build. 127, 892–906 (2016)

    Article  Google Scholar 

  6. Niall, D., Kinnane, O., West, R.P., McCormack, S.: Mechanical and thermal evaluation of different types of pcm-concrete composite panels. J. Struct. Integr. Maint. 2(2), 100–108 (2017)

    Article  Google Scholar 

  7. Dehdezi, P.K., Hall, M.R., Dawson, A.R., Casey, S.P.: Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. Int. J. Pavement Eng. 14(5), 449–462 (2013)

    Article  Google Scholar 

  8. Auricchio, F., Petrini, L.: A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int. J. Numer. Methods Eng. 61(6), 807–836 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Savi, M.A., Paiva, A., Baeta-Neves, A.P., Pacheco, P.M.: Phenomenological modeling and numerical simulation of shape memory alloys: a thermo-plastic-phase transformation coupled model. J. Intell. Mater. Syst. Struct. 13(5), 261–273 (2002)

    Article  Google Scholar 

  10. Inoue, T.: Metallo-thermo-mechanical coupling in quenching. In: Hashmi, S., Batalha, G.F., Tyne, C.J.V., Yilbas, B. (eds.) Comprehensive Materials Processing, vol. 12, pp. 177–251. Oxford, Elsevier (2014). ISBN: 978-0-08-096533-8

    Chapter  Google Scholar 

  11. Mackerle, J.: Finite element analysis and simulation of quenching and other heat treatment processes. A bibliography (1976–2001). Comput. Mater. Sci. 27, 313–332 (2003)

    Article  Google Scholar 

  12. Simsir, C.: Modeling and simulation of steel heat treatment: prediction of microstructure, distortion, residual stresses and cracking. In: Totten, G., Dosset, J. (eds.) ASM Handbook 4B: Steel Heat Treating Technologies, pp. 409–466. ASM International, Materials Park (2014)

    Google Scholar 

  13. Voller, V., Swenson, J., Paola, C.: An analytical solution for a stefan problem with variable latent heat. Int. J. Heat Mass Transf. 47(24), 5387–5390 (2004)

    Article  MATH  Google Scholar 

  14. Voller, V.: An implicit enthalpy solution for phase change problems: with application to a binary alloy solidification. Appl. Math. Model. 11(2), 110–116 (1987)

    Article  MATH  Google Scholar 

  15. Bhattacharya, M., Basak, T., Ayappa, K.: A fixed-grid finite element based enthalpy formulation for generalized phase change problems: role of superficial mushy region. Int. J. Heat Mass Transf. 45(24), 4881–4898 (2002)

    Article  MATH  Google Scholar 

  16. Horstemeyer, M.F.: Multiscale modeling: a review. In: Leszczynski, J., Shukla, M.K. (eds.) Practical Aspects of Computational Chemistry: Methods, Concepts and Applications, pp. 87–135. Springer, Dordrecht (2010). ISBN: 978-90-481-2687-3

    Google Scholar 

  17. Geers, M.G., Kouznetsova, V.G., Brekelmans, W.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)

    Article  MATH  Google Scholar 

  18. Özdemir, I., Brekelmans, W., Geers, M.G.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods Appl. Mech. Eng. 198(3), 602–613 (2008)

    Article  ADS  MATH  Google Scholar 

  19. Blanco, P.J., Giusti, S.M.: Thermomechanical multiscale constitutive modeling: accounting for microstructural thermal effects. J. Elast. 115(1), 27–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rivarola, F.L., Etse, G., Folino, P.: On thermodynamic consistency of homogenization-based multiscale theories. J. Eng. Mater. Technol. 139(3), 031011 (2017)

    Article  Google Scholar 

  21. Kouznetsova, V., Geers, M.: A multi-scale model of martensitic transformation plasticity. Mech. Mater. 40(8), 641–657 (2008)

    Article  Google Scholar 

  22. Mahnken, R., Schneidt, A., Antretter, T., Ehlenbröker, U., Wolff, M.: Multi-scale modeling of bainitic phase transformation in multi-variant polycrystalline low alloy steels. Int. J. Solids Struct. 54, 156–171 (2015)

    Article  Google Scholar 

  23. Coleman, B., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  24. Coleman, B., Mizel, V.: Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40(4), 1116–1125 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  25. Coleman, B., Gurtin, M.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)

    Article  ADS  Google Scholar 

  26. Nguyen, Q.S., Andrieux, S.: The non-local generalized standard approach: a consistent gradient theory. C. R. Mécanique 333(2), 139–145 (2005)

    Article  MATH  ADS  Google Scholar 

  27. Kratochvil, J., Dillon Jr., O.: Thermodynamics of elastic-plastic materials as a theory with internal state variables. J. Appl. Phys. 40(8), 3207–3218 (1969)

    Article  ADS  Google Scholar 

  28. Schicchi, D., Hunkel, M.: Transformation plasticity and kinetic during bainite transformation on a 22MnB5 steel grade. Materialwiss. Werkstofftech. 47(8), 771–779 (2016)

    Article  Google Scholar 

  29. Said Schicchi, D., Hoffmann, F., Hunkel, M., Lübben, T.: Numerical and experimental investigation of the mesoscale fracture behaviour of quenched steels. Fatigue Fract. Eng. Mater. Struct. 40(4), 556–570 (2017)

    Article  Google Scholar 

  30. Truesdell, C., Toupin, R.: The classical field theories. In: Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, pp. 226–858. Springer (1960)

  31. Chaboche, J.L.: Unified cyclic viscoplastic constitutive equations: development, capabilities, and thermodynamic framework. In: Krausz, A.S., Krausz, K. (eds.) Unified Constitutive Laws of Plastic Deformation, Chap. 1, pp. 1–68. Academic Press, Cambridge (1996)

    Google Scholar 

  32. Wolff, M., Böhm, M., Helm, D.: Material behavior of steel-modeling of complex phenomena and thermodynamic consistency. Int. J. Plast. 24(5), 746–774 (2008)

    Article  MATH  Google Scholar 

  33. Bertram, A., Krawietz, A.: On the introduction of thermoplasticity. Acta Mech. 223, 2257–2268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nguyen, Q.S.: Gradient thermodynamics and heat equations. C. R. Mécanique 338(6), 321–326 (2010)

    Article  MATH  ADS  Google Scholar 

  35. Reddy, J.N.: An Introduction to Continuum Mechanics. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  36. Dvorkin, E.N., Goldschmit, M.B.: Nonlinear Continua. Springer, New York (2006)

    MATH  Google Scholar 

  37. Monteiro, E., Yvonnet, J., He, Q.C.: Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput. Mater. Sci. 42(4), 704–712 (2008)

    Article  Google Scholar 

  38. Kamiński, M.: Homogenization of transient heat transfer problems for some composite materials. Int. J. Eng. Sci. 41(1), 1–29 (2003)

    Article  MathSciNet  Google Scholar 

  39. Terada, K., Kurumatani, M., Ushida, T., Kikuchi, N.: A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Comput. Mech. 46(2), 269–285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Özdemir, I., Brekelmans, W., Geers, M.: Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Methods Eng. 73(2), 185–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ågren, J.: On the classification of phase transformations. Scr. Mater. 46(12), 893–898 (2002)

    Article  Google Scholar 

  42. Said Schicchi, D., Caggiano, A., Lübben, T., Hunkel, M., Hoffmann, F.: On the mesoscale fracture initiation criterion of heterogeneous steels during quenching. Mater. Perform. Charact. 6(1), 80–104 (2017)

    Google Scholar 

  43. Said Schicchi, D., Caggiano, A., Benito, S., Hoffmann, H.: Mesoscale fracture of a bearing steel: a discrete crack approach on static and quenching problems. Theor. Appl. Fract. Mech. 90, 154–164 (2017)

    Article  Google Scholar 

  44. Johnson, W., Mehl, R.: Reaction kinetics in process of nucleation and growth. Trans. AIME 135, 416–458 (1939)

    Google Scholar 

  45. Avrami, M.: Kinetics of phase change III: granulation, phase change and microstructure. J. Chem. Phys. 9(2), 177–184 (1941)

    Article  ADS  Google Scholar 

  46. Koistinen, D.P., Marburger, R.E.: A general equation prescribing extent of austenite-martensite transformation in pure Fe–C alloys and plain carbon steels. Acta Metall. 7, 59–60 (1959)

    Article  Google Scholar 

  47. Poh, L.H., Peerlings, R., Geers, M., Swaddiwudhipong, S.: Homogenization towards a grain-size dependent plasticity theory for single slip. J. Mech. Phys. Solids 61(4), 913–927 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  48. Oliver, J., Caicedo, M., Roubin, E., Huespe, A.E., Hernández, J.: Continuum approach to computational multiscale modeling of propagating fracture. Comput. Methods Appl. Mech. Eng. 294, 384–427 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Giusti, S., Novotny, A., de Souza Neto, E., Feijóo, R.: Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes. Comput. Methods Appl. Mech. Eng. 198(5), 727–739 (2009)

    Article  ADS  MATH  Google Scholar 

  50. Sỳkora, J., Šejnoha, M., Šejnoha, J.: Homogenization of coupled heat and moisture transport in masonry structures including interfaces. Appl. Math. Comput. 219(13), 7275–7285 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Perić, D., de Souza Neto, E., Feijóo, R., Partovi, M., Molina, A.: On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Int. J. Numer. Methods Eng. 87(1–5), 149–170 (2011)

    Article  MATH  Google Scholar 

  52. de Souza Neto, E., Feijóo, R.: On the equivalence between spatial and material volume averaging of stress in large strain multi-scale solid constitutive models. Mech. Mater. 40(10), 803–811 (2008)

    Article  Google Scholar 

  53. Grytz, R., Meschke, G.: Consistent micro-macro transitions at large objective strains in curvilinear convective coordinates. Int. J. Numer. Methods Eng. 73(6), 805–824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. de Souza Neto, E., Feijóo, R.: Variational foundations of multi-scale constitutive models of solid: small and large strain kinematical formulation. LNCC Res. Dev. Rep. 16 (2006)

  55. Şimşir, C., Gür, C.H.: A FEM based framework for simulation of thermal treatments: application to steel quenching. Comput. Mater. Sci. 44(2), 588–600 (2008)

    Article  Google Scholar 

  56. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  57. Mandel, J.: Plasticité classique et viscoplasticité. CISM Lecture Notes. Springer, Udine (1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Caggiano.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said Schicchi, D., Caggiano, A., Hunkel, M. et al. Thermodynamically consistent multiscale formulation of a thermo-mechanical problem with phase transformations. Continuum Mech. Thermodyn. 31, 273–299 (2019). https://doi.org/10.1007/s00161-018-0682-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0682-2

Keywords

Navigation