Skip to main content
Log in

Dual and mixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamics with second sound effect

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord–Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot–Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerman, C.C., Bertman, B., Fairbank, H.A., Guyer, R.A.: Second sound in solid helium. Phys. Rev. Lett. 16, 789–791 (1966)

    Article  ADS  Google Scholar 

  2. Anthony, K.: Hamilton’s action principle and thermodynamics of irreversible processes a unifying procedure for reversible and irreversible processes. J. Nonnewton Fluid Mech. 96(1–2), 291–339 (2001)

    Article  MATH  Google Scholar 

  3. Aouadi, M.: Generalized theory of thermoelastic diffusion for anisotropic media. J. Therm. Stresses 31(3), 270–285 (2008)

    Article  Google Scholar 

  4. Apostolakis, G., Dargush, G.F.: Mixed variational principles for dynamic response of thermoelastic and poroelastic continua. Int. J. Solids Struct. 50(5), 642–650 (2013)

    Article  Google Scholar 

  5. Apostolakis, G., Dargush, G.F.: Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form. Acta Mech. 224(9), 2065–2088 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Askar Altay, G., Cengiz Dökmeci, M.: Some variational principles for linear coupled thermoelasticity. Int. J. Solids Struct. 33(26), 3937–3948 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bailey, C.D.: Hamilton’s principle and calculus of variations. Acta Mech. 44(1), 49–57 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bargmann, H.: Recent developments in the field of thermally induced waves and vibrations. Nucl. Eng. Des. 27(3), 372–381 (1974)

    Article  Google Scholar 

  9. Baruch, M., Riff, R.: Hamilton’s principle, Hamilton’s law—6\(^n\) correct formulations. AIAA J. 20(5), 687–692 (1982)

    Article  ADS  MATH  Google Scholar 

  10. Batra, G.: On a principle of virtual work for thermo-elastic bodies. J. Elast. 21(2), 131–146 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bem, Z.: Existence of a generalized solution in thermoelasticity with one relaxation time. J. Therm. Stresses 5(2), 195–206 (1982)

    Article  MathSciNet  Google Scholar 

  12. Ben-Amoz, M.: On a variational theorem in coupled thermoelasticity. J. Appl. Mech. 32(4), 943–945 (1965)

    Article  Google Scholar 

  13. Berdichevsky, V.L.: Variational Principles of Continuum Mechanics: I. Fundamentals. Springer, Berlin (2009)

    MATH  Google Scholar 

  14. Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems with Internal Microstructures. Oxford University Press, New York (1994)

    Google Scholar 

  15. Biot, M.A.: Theory of stress–strain relations in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys. 25, 1385–1391 (1954)

    Article  ADS  MATH  Google Scholar 

  16. Biot, M.A.: Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys. Rev. 97, 1463–1469 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses. Dover Publications, Mineola, New York (1960). Originally published by Wiley, Inc, New York, in 1960

  19. Cannarozzi, A.A., Ubertini, F.: Mixed variational method for linear coupled thermoelastic analysis. Int. J. Solids Struct. 38(4), 717–739 (2001)

    Article  MATH  Google Scholar 

  20. Carini, A., Genna, F.: Some variational formulations for continuum nonlinear dynamics. J. Mech. Phys. Solids 46(7), 1253–1277 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Cengiz Dökmeci, M.: Hamilton’s principle and associated variational principles in polar thermopiezoelectricity. Phys. A 389, 2966–2974 (2010)

    Article  Google Scholar 

  22. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39(3), 355–376 (1986)

    Article  ADS  MATH  Google Scholar 

  23. Chandrasekharaiah, D.S.: Variational and reciprocal principles in micropolar thermoelasticity. Int. J. Eng. Sci. 25(1), 55–63 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chandrasekharaiah, D.S.: A uniqueness theorem in the theory of thermoelasticity without energy dissipation. J. Therm. Stresses 19(3), 262–272 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chester, M.: Second sound in solids. Phys. Rev. 131, 2013–2015 (1963)

    Article  ADS  Google Scholar 

  26. Chiriţă, S., Ciarletta, M.: Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech. Res. Commun. 37, 271–275 (2010)

    Article  MATH  Google Scholar 

  27. de Groot, S.R.: Thermodynamics of Irreversible Processes. North-Holland Publishing Company, Amsterdam (1951)

  28. Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math. 33, 1–8 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dym, C.L., Shames, I.H.: Solid Mechanics. A Variational Approach, Augmented Edition. Springer, New York (2013)

    MATH  Google Scholar 

  30. Ebrahimzadeh, Z., Leok, M., Mahzoon, M.: A novel variational formulation for thermoelastic problems. Commun. Nonlinear Sci. Numer. Simul. 22, 263–268 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Eslami, M.R., Hetnarski, R.B., Ignaczak, J., Noda, N., Sumi, N., Tanigawa, Y.: Theory of Elasticity and Thermal Stresses, Solid Mechanics and Its Applications, vol. 197. Springer, Netherland (2013)

    Book  MATH  Google Scholar 

  32. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  33. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C (ed.) Mechanics of Solids, Encyclopedia of Physics, vol. 6a/2, pp. 1–295. Springer, Berlin (1972)

  36. Gyarmati, I.: Non-equilibrium Thermodynamics: Field Theory and Variational Principles. Springer, Berlin (1970)

    Book  Google Scholar 

  37. Hamilton, W.R.: On a general method in dynamics. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834)

    Article  Google Scholar 

  38. Hamilton, W.R.: Second essay on a general method in dynamics. Philos. Trans. R. Soc. Lond. 125, 95–144 (1835)

    Article  Google Scholar 

  39. Har, J., Tamma, K.: Advances in Computational Dynamics of Particles, Materials and Structures. Wiley, West Sussex (2002)

    MATH  Google Scholar 

  40. He, J.H.: Asymptotic methods for solitary solutions and compactons. In: Abstract and Applied Analysis, pp. 1–130 (2012) 916793

  41. He, J.H.: Hamilton’s principle for dynamical elasticity. Appl. Math. Lett. 72, 65–69 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Herrmann, G.: On variational principles in thermoelasticity and heat conduction. Q. Appl. Math. 21(2), 151–155 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ignaczak, J.: Linear dynamic thermoelasticity: a survey. Shock Vib. Dig. 13(9), 3–8 (1981)

    Article  Google Scholar 

  44. Ignaczak, J.: A note on uniqueness in thermoelasticity with one relaxation time. J. Therm. Stress. 5(3–4), 257–264 (1982)

    Article  MathSciNet  Google Scholar 

  45. Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990)

    Article  Google Scholar 

  46. Kaufman, A.N.: Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. A 100(8), 419–422 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  47. Keramidas, G.A., Ting, E.C.: A finite element formulation for thermal stress analysis. Part I: variational formulation. Nucl. Eng. Des. 39, 267–275 (1976)

    Article  Google Scholar 

  48. Kim, J.: Extended framework of Hamilton’s principle for thermoelastic continua. Comput. Math. Appl. 73(7), 1505–1523 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kim, J., Dargush, G.F., Ju, Y.K.: Extended framework of Hamilton’s principle for continuum dynamics. Int. J. Solids Struct. 50(20–21), 3418–3429 (2013)

    Article  Google Scholar 

  50. Kim, J., Dargush, G.F., Lee, H.S.: Extended framework of Hamilton’s principle in heat diffusion. Int. J. Mech. Sci. 114, 166–176 (2016)

    Article  Google Scholar 

  51. Kline, K.A., DeSilva, C.N.: Variational principles for linear coupled thermoelasticity with microstructure. Int. J. Solids Struct. 7, 129–142 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kotowski, R.: Hamilton’s principle in thermodynamics. Arch. Mech. 44, 203–215 (1992)

    MathSciNet  MATH  Google Scholar 

  53. Lanczos, C.: The Variational Principles of Mechanics, 4th edn. Dover Publications, New York (1970)

    MATH  Google Scholar 

  54. Leitmann, G.: Some remarks on Hamilton’s principle. J. Appl. Mech. 30(4), 623–625 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Li, X.: A generalized theory of thermoelasticity for an anisotropic medium. Int. J. Eng. Sci. 30(5), 571–577 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  56. Liu, G.L.: A vital innovation in Hamilton principle and its extension to initial-value problems. In: Proceedings of the 4th International Conference on Nonlinear Mechanics, pp. 90–97. Shanghai University Press, Shanghai, China (2002)

  57. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  ADS  MATH  Google Scholar 

  58. Lubarda, V.A.: On thermodynamic potentials in linear thermoelasticity. Int. J. Solids Struct. 41(26), 7377–7398 (2004)

    Article  MATH  Google Scholar 

  59. Lucia, U.: Macroscopic irreversibility and microscopic paradox: a constructal law analysis of atoms as open systems. Sci. Rep. 6(35796) (2016). https://doi.org/10.1038/srep35796

  60. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999)

  61. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1983)

    MATH  Google Scholar 

  62. Maugin, G.A., Kalpakides, V.K.: A Hamiltonian formulation for elasticity and thermoelasticity. J. Phys. A: Math. Gen. 35(50), 10775–10788 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Maxwell, J.: On the dynamical theory of gases. Philos. Trans. R. Soc. 175, 49–88 (1867)

    Article  Google Scholar 

  64. Morrison, P.J.: Bracket formulation for irreversible classical fields. Phys. Lett. A 100(8), 423–427 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  65. Nappa, L.: Variational principles in micromorphic thermoelasticity. Mech. Res. Commun. 28(4), 405–412 (2001)

    Article  MATH  Google Scholar 

  66. Nickell, R.E., Sackman, J.L.: Variational principles for linear coupled thermoelasticity. Q. Appl. Math. 26, 11–26 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  67. Nowacki, W.: Thermoelasticity, 2nd edn. Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  68. Oden, J.T., Reddy, J.N.: Variational Methods in Theoretical Mechanics, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  69. Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  ADS  MATH  Google Scholar 

  70. Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  ADS  MATH  Google Scholar 

  71. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes, 3rd edn. Wiley, New York (1968)

    MATH  Google Scholar 

  72. Rafalski, P.: A variational principle for the coupled thermoelastic problem. Int. J. Eng. Sci. 6(8), 465–471 (1968)

    Article  MATH  Google Scholar 

  73. Rayleigh, J.W.S.: Theory of Sound. I. & II., 2nd edn. Dover Publications, New York (1887). Reprint in 1945

  74. Reddy, J.N.: Variational principles for linear coupled dynamic theory of thermoviscoelasticity. Int. J. Eng. Sci. 14(7), 605–616 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  75. Serra, E., Bonaldi, M.: A finite element formulation for thermoelastic damping analysis. Int. J. Numer. Methods Eng. 78(6), 671–691 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sherief, H.H.: On uniqueness and stability in generalized thermoelasticity. Q. Appl. Math. 45, 773–778 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sherief, H.H., Dhaliwal, R.S.: A uniqueness theorem and a variational principle for generalized thermoelasticity. J. Therm. Stresses 3, 223–230 (1980)

    Article  Google Scholar 

  78. Smith Jr., D.R., Smith, C.V.: When is Hamilton’s principle an extremum principle? AIAA J. 12(11), 1573–1576 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Tabarrok, B.: Complementary variational principles in elastodynamics. Comput. Struct. 19(1–2), 239–246 (1984)

    Article  MATH  Google Scholar 

  80. Tabarrok, B., Rimrott, F.P.J.: Variational Methods and Complementary Formulations in Dynamics. Kluwer, The Netherlands (1994)

    Book  MATH  Google Scholar 

  81. Tonti, E.: Variational formulation for every nonlinear problem. Int. J. Eng. Sci. 22(11), 1343–1371 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  82. Tóth, B.: Multi-field dual-mixed variational principles using non-symmetric stress field in linear elastodynamics. J. Elast. 122, 113–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  83. Vujanovic, B., Djukic, D.S.: On one variational principle of Hamilton’s type for nonlinear heat transfer problem. Int. J. Heat Mass Transf. 15(5), 1111–1123 (1972)

    Article  Google Scholar 

  84. Weinstock, R.: Calculus of Variations. With Applications to Physics and Engineering. Dover Publications, New York (1974)

    MATH  Google Scholar 

  85. Youssef, H.M., Al-Lehaibi, E.A.: Variational principle of fractional order generalized thermoelasticity. Appl. Math. Lett. 23(10), 1183–1187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Tóth.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, B. Dual and mixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamics with second sound effect. Continuum Mech. Thermodyn. 30, 319–345 (2018). https://doi.org/10.1007/s00161-017-0605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0605-7

Keywords

Navigation