Skip to main content
Log in

Temperature distribution of a simplified rotor due to a uniform heat source

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

Contact half length (m)

\(c_p\) :

Specific heat (\(\frac{\text {J}}{\text {kg}\,\text {K}}\))

\(\delta \) :

Heat penetration depth (m)

h :

Heat transfer coefficient (\(\frac{\text {W}}{\text {m}^\text {2}\,\text {K}}\))

\(h_{0}\) :

Reference heat transfer coefficient (\(\frac{\text {W}}{\text {m}^\text {2}\,\text {K}}\))

\(h^{*}\) :

Dimensionless heat transfer coefficient (–)

\(\kappa \) :

Thermal diffusivity (\(\frac{\text {m}^\text {2}}{\text {s}}\))

\(\lambda \) :

Thermal conductivity (\(\frac{\text {W}}{\text {m}\,\text {K}}\))

\(\lambda _{0}\) :

Reference thermal conductivity (\(\frac{\text {W}}{\text {m}\,\text {K}}\))

\(\lambda ^{*}\) :

Dimensionless thermal conductivity (–)

Pe :

Peclet number (–)

\(\dot{q}\) :

Heat source intensity (\(\frac{\text {W}}{\text {m}^\text {2}}\))

r :

Radius (m)

\(\rho \) :

Density (\(\frac{\text {kg}}{\text {m}^\text {3}}\))

s :

Sliding distance (m)

T :

Temperature (\(^\circ \text {C}\))

\(T_{\text {max}}\) :

Maximum temperature (\(^\circ \text {C}\))

\(T_{\text {max}}^{\text {analytical}}\) :

Maximum temperature (analytical approach) (\(^\circ \text {C}\))

\(T_{\text {max}}^{\text {2D}}\) :

Maximum temperature (two-dimensional model) (\(^\circ \text {C}\))

\(\theta \) :

Spatial function of the temperature profile (–)

\(u_z\) :

Displacement (m)

v :

Circumferential/sliding velocity (\(\frac{\text {m}}{\text {s}}\))

x :

x-coordinate (m)

\(\xi \) :

Dimensionless x-coordinate (–)

y :

y-coordinate (m)

z :

z-coordinate (m)

\(\zeta \) :

Dimensionless z-coordinate (–)

References

  1. Abrams Premium Stahl: Technical data sheet, Premium 1.7225 (UNS G41400). http://www.premium-stahl.de/images/filedownloads/de/datenblaetter/1.7225.pdf (2012). Accessed 1 June 2017

  2. Chupp, R.E., Hendricks, R.C., Lattime, S.B., Steinetz, B.M.: Sealing in Turbomachinery. J. propul. power. 22(2), 313–349 (2006)

    Article  Google Scholar 

  3. Dassault Systèmes Simulia Corporation: Abaqus Manuals. Version 6.13 (2013)

  4. DesRuisseaux, N.R., Zerkle, R.D.: Temperature in semi-infinite and cylindrical bodies subjected to moving heat sources and surface cooling. J. Heat Transf. 92(3), 456–464 (1970)

    Article  Google Scholar 

  5. Deutsche Edelstahlwerke: Technical data sheet, Firmodur 7225/Firmodur 7227 (UNS G41400). https://www.dewstahl.com/fileadmin/files/dewstahl.com/documents/Publikationen/Werkstoffdatenblaetter/Baustahl/1.7225_1.7227_de.pdf (2015). Accessed 1 June 2017

  6. Fischer, F.D., Schreiner, W.E., Werner, E.A., Sun, C.G.: The temperature and stress fields developing in rolls during hot rolling. J. Mater. Process. Technol. 150, 263–269 (2004)

    Article  Google Scholar 

  7. Fischer, F.D., Werner, E.A., Knothe, K.: The surface temperature of a halfplane heated by friction and cooled by convection. ZAMM Z. Angew. Math. Mech. 81(2), 75–81 (2001)

    Article  MATH  Google Scholar 

  8. Gecim, B., Winer, W.O.: Steady temperature in a rotating cylinder subject to surface heating and convective cooling. J. Tribol. 106, 120–127 (1984)

    Article  Google Scholar 

  9. Kennedy, F.E.: Frictional heating and contact temperatures. Mod. Tribol. Handb. 1, 235–259 (2001)

    Google Scholar 

  10. Kennedy, F.E., Tian, X.: Modeling sliding contact temperatures, including effects of surface roughness and convection. J. Tribol. 138(4), 042101-1–042101-9 (2016)

    Article  Google Scholar 

  11. Kennedy, T.C., Traiviratana, S.: Transient effects on heat conduction in sliding bodies. Numer. Heat Transf. Part A 47, 57–77 (2005)

    Article  ADS  Google Scholar 

  12. Knothe, K., Liebelt, S.: Determination of temperatures for sliding contact with applications for wheel-rail systems. Wear 189, 91–99 (1995)

    Article  Google Scholar 

  13. Kolonits, F.: Analysis of the temperature of the rail/wheel contact surface using a half-space model and a moving heat source. Proc. IMechE Part F J. Rail and Rapid Transit 230(2), 502–509 (2016)

    Article  Google Scholar 

  14. Marscher, W.D.: Thermal versus mechanical effects in high speed sliding. Wear 79, 129–143 (1982)

    Article  Google Scholar 

  15. Osman, T., Guenoun, S., Boucheffa, A.: Temperature field in a rotating roller subjected to interface heating. Eur. Phys. J. Appl. Phys. 50, 205041–205044 (2010)

    Article  Google Scholar 

  16. Patula, E.J.: Steady-state temperature distribution in a rotating roll subject to surface heat fluxes and convective cooling. J. Heat Transf. 103(1), 36–41 (1981)

    Article  Google Scholar 

  17. Pychynski, T., Dullenkopf, K., Bauer, H.J.: Theoretical study on the origin of radial cracks in labyrinth seal fins due to rubbing. In: Proceedings of ASME Turbo Expo 2013 (ASME-Paper GT2013-94834) (2013)

  18. Pychynski, T., Höfler, C., Bauer, H.J.: Experimental study on the friction contact between a labyrinth seal fin and a honeycomb stator. J. Eng. Gas Turbines Power 138(6), 062501-1–062501-9 (2016)

    Google Scholar 

  19. Steinetz, B.M., Hendricks, R.C., Munson, J.: Advanced seal technology role in meeting next generation turbine engine goals. In: Design Principles and Methods for Aircraft Gas Turbine Engines (RTO MP-8), pp. 11-1–11-13 (1999)

  20. Tian, X., Kennedy, F.E.: Contact surface temperature models for finite bodies in dry and boundary lubricated sliding. J. Tribol. 115(3), 411–418 (1993)

    Article  Google Scholar 

  21. Yuen, W.Y.D.: On the steady-state temperature distribution in a rotating cylinder subject to heating and cooling over its surface. J. Heat Transf. 106(3), 578–585 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Deutsche Forschungsgemeinschaft through the project “Rub-in processes in turbines - experimental investigation and modeling” (WE 2351/14-1). The authors appreciate the technical input of the MTU Aero Engines, given by Dr. Beate Schleif.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Welzenbach.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welzenbach, S., Fischer, T., Meier, F. et al. Temperature distribution of a simplified rotor due to a uniform heat source. Continuum Mech. Thermodyn. 30, 279–290 (2018). https://doi.org/10.1007/s00161-017-0600-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0600-z

Keywords

Navigation