Skip to main content
Log in

Micropolar nematic model for polarized liquid crystals

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A micromorphic electroelastic model for polarized liquid crystals is proposed on the basis of a representation of electric multipoles in terms of microdeformation. Nematic liquid crystals are modeled as micropolar continua endowed with intrinsic electric dipole and quadrupole. A nonlinear dimensionless problem for a homogeneous nematic layer is formulated and solved numerically. The existence of a threshold electric potential is discussed, and the corresponding linearized system is also obtained to compare results on small values of deformation and electric field. Differently from common results of the classical continuum approach, asymmetric deformations and electric potentials within the layer are obtained due to the occurrence of non-null intrinsic quadrupole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oseen, W.C.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899 (1933)

    Article  MATH  Google Scholar 

  2. Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  3. Stephen, M.J., Straley, J.P.: Physics of liquid crystals. Rev. Mod. Phys. 46, 617–704 (1974)

    Article  ADS  Google Scholar 

  4. Chandrasekhar, S.: Liquid Crystals, 2nd edn. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  5. Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    MathSciNet  MATH  Google Scholar 

  6. Ericksen, J.L.: Equilibrium theory of liquid crystals. Adv. Liq. Cryst. 2, 233–298 (1976)

    Article  Google Scholar 

  7. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leslie, F.M.: Continuum theory for nematic liquid crystals. Contin. Mech. Thermodyn. 4, 167–175 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lee, J.D., Eringen, A.C.: Relations of two continuum theories of liquid crystals. In: Johnson, J.F., Porter, R.S. (eds.) Liquid Crystals and Ordered Fluids, pp. 315–330. Plenum Press, New York (1974)

    Chapter  Google Scholar 

  10. Eringen, A.C.: A unified continuum theory of electrodynamics of liquid crystals. Int. J. Eng. Sci. 35, 1137–1157 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eringen, A.C.: An assessment of director and micropolar theories of liquid crystals. Int. J. Eng. Sci. 31, 605–616 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eringen, A.C.: Microcontinuum Field Theories II—Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  13. Romeo, M.: Micromorphic continuum model for electromagnetoelastic solids. ZAMP 62, 513–527 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Romeo, M.: A microstructure continuum approach to electromagneto-elastic conductors. Contin. Mech. Thermodyn. 28, 1807–1820 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Romeo, M.: Micromorphic elastic dielectrics: linear model and micropolar isotropic thin layers. Int. J. Sol. Struct. 49, 3935–3941 (2012)

    Article  Google Scholar 

  16. Romeo, M.: Electroelastic waves in dielectrics modeled as polarizable continua. Wave Motion 60, 121–134 (2016)

    Article  MathSciNet  Google Scholar 

  17. Prost, J., Marcerou, J.P.: On the microscopic interpretation of flexoelectricity. J. Phys. 38, 315–324 (1977)

    Article  Google Scholar 

  18. Marcerou, J.P., Prost, J.: The different aspects of flexoelectricity in nematics. Mol. Cryst. Liq. Cryst. 58, 259–284 (1980)

    Article  Google Scholar 

  19. Eringen, A.C.: Microcontinuum Field Theories I—Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Romeo, M.: Polarization in dielectrics modeled as micromorphic continua. ZAMP 66, 1233–1247 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Romeo, M.: A variational formulation for electroelasticity of microcontinua. Math. Mech. Solids 20, 1234–1250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Villanueva-García, M., Robles, J., Martínez-Richa, A.: Quadrupolar moment calculations and mesomorphic character of model dimeric liquid crystals. Comput. Mater. Sci. 22, 300–308 (2001)

    Article  Google Scholar 

  24. Self, R.H., Please, C.P., Sluckin, T.J.: Deformation of nematic liquid crystals in an electric field. Eur. J. Appl. Math. 13, 1–23 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, H., Choate, E.P., Wang, H.: Optical Fredericks transition in a nematic liquid crystal layer. In: Thakur, V., Kessler, M. (eds.) Liquid Crystalline Polymers, pp. 265–295. Springer, Cham (2015)

    Chapter  Google Scholar 

  26. Zheng, G., Zhang, H., Ye, W., Zhang, Z., Song, H., Xuan, Li: Determination of the flexoelectric coefficient (e1–e3) in nematic liquid crystal by using fully leaky optical-guided mode. AIP Adv. 6, 025011 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Romeo.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeo, M. Micropolar nematic model for polarized liquid crystals. Continuum Mech. Thermodyn. 30, 207–219 (2018). https://doi.org/10.1007/s00161-017-0598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0598-2

Keywords

Navigation