Skip to main content
Log in

Modeling interface shear behavior of granular materials using micro-polar continuum approach

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ABAQUS: ABAQUS user’s manual version 6.3. Hibbitt, Karlsson and Sorensen Inc., Pawtucket (2002)

    Google Scholar 

  2. Alsaleh, M.: Numerical modeling for strain localization in granular materials using Cosserat theory enhanced with microfabric properties. Ph.D. Dissertation, Louisiana State University, Baton Rouge, Louisiana, USA (2004)

  3. Alsaleh, M., Voyiadjis, G., Alshibli, K.: Modeling strain localization in granular materials using micropolar theory: mathematical formulations. Int. J. Numer. Anal. Methods Geomech. 30(15), 1501–1524 (2006)

    Article  MATH  Google Scholar 

  4. Alsaleh, M., Kitsabunnarat, A., Helwany, S.: Strain localization and failure load predictions of geosynthetic reinforced soil structures. Interact. Multiscale Mech. 2(3), 235–261 (2009)

    Article  Google Scholar 

  5. Alshibli, K., Alsaleh, M., Voyiadjis, G.: Modeling strain localization in granular materials using micropolar theory: numerical implementation and verification. Int. J. Numer. Anal. Methods Geomech. 30(15), 1525–1544 (2006)

    Article  MATH  Google Scholar 

  6. Bauer, E., Huang, W.: Numerical study of polar effects in shear zone. In: Pande, G.N., Pietruszczak, S., Schweiger, H., (eds.) Proceeding of the 7th International Symposium on Numerical Models in Geomechanics, pp. 133–138. Balkema Press, Rotterdam (1999)

  7. Bauer, E., Huang, W.: Evolution of polar quantities in a granular Cosserat material under shearing. In: Mühlhaus, H.B., Pasternak, E., (eds.) Proceeding of the 5th International Workshop on Bifurcation and Localisation in Geomechanics, pp. 227–238. Balkema Press, Perth, Australia (2001)

  8. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structure. Wiley, New York (2000)

    MATH  Google Scholar 

  9. Boulon, M.: Basic features of soil structure interface behaviour. Comput. Geotech. 7, 115–131 (1989)

    Article  Google Scholar 

  10. Boulon, M., Nova, R.: Modelling of soil-structure interface behaviour a comparison between elastoplastic and rate type laws. Comput. Geotech. 9(1–2), 21–46 (1990)

    Article  Google Scholar 

  11. Bolton, M.D., Cheng, Y.P.: Micro-geomechanics. In: Springman, S.M., (ed.) Proceeding of Constitutive and Centrifuge Modelling: Two Extremes. Swets & Zeitlinger, Lisse (2002)

  12. Brumund, W.F., Leonards, G.A.: Experimental study of static and dynamic friction between sand and typicial construction materials. J. Test. Eval. 1, 162–165 (1973)

    Article  Google Scholar 

  13. Chen, Z., Schreyer, H.: Simulation of soil-concrete interfaces with nonlocal constitutive models. J. Eng. Mech. 113(11), 1665–1677 (1987)

    Article  Google Scholar 

  14. De Borst, R.: Numerical methods for bifurcation analysis in geomechanies. Ing. Arehiv 59, 160–174 (1989)

    Article  Google Scholar 

  15. De Borst, R.: A generalisation of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Eng. 103, 347–362 (1993)

    Article  ADS  MATH  Google Scholar 

  16. De Borst, R., Sluys, L.J., Mühlhaus, H.B., Pamin, J.: Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10, 99–121 (1993)

    Article  Google Scholar 

  17. De Gennaro, V., Frank, R.: Elasto-plastic analysis of the interface behaviour between granular media and structure. Comput. Geotech. 29(7), 547–572 (2002)

    Article  Google Scholar 

  18. DeJong, J.T., Frost, J.D.: Physical evidence of shear banding at granular-continuum interfaces. In: Smyth, A. (ed.) Proceeding of 15th ASCE Engineering Mechanics Conference. http://www.civil.columbia.edu/em2002/ (2002)

  19. DeJong, J.T., Westgate, Z.J.: Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior. J. Geotech. Geoenviron. Eng. ASCE 135(11), 1646–1660 (2009)

    Article  Google Scholar 

  20. Desai, C.S., Zaman, M.M., Lightner, J.G., Siriwardane, H.J.: Thin-layer element for interface and joints. Int. J. Numer. Anal. Methods Geomech. 8, 19–43 (1984)

    Article  Google Scholar 

  21. Dietz, M., Lings, M.: Postpeak strength of interfaces in a stress-dilatancy framework. J. Geotech. Geoenviron. Eng. ASCE 132(11), 1474–1484 (2006)

    Article  Google Scholar 

  22. Dove, J.E.: Particle-geomembrane interface behavior as influenced by surface topography. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA (1996)

  23. Dove, J.E., Frost, J.D.: Peak friction behavior of smooth geomembrane-particle interfaces. J. Geotech. Geoenviron. Eng. ASCE 125(7), 544–555 (1999)

    Article  Google Scholar 

  24. Dove, J.E., Harping, J.C.: Geometric and spatial parameters for analysis of geomembrane/soil interface behavior. In: Proceeding of Geosynthetics, vol. 1, pp. 575–588. International Fabrics Association International, Boston (1999)

  25. Dove, J.E., Jarrett, J.B.: Behavior of dilative sand interface in a geotribology framework. J. Geotech. Geoenviron. Eng. ASCE 128(1), 25–37 (2002)

    Article  Google Scholar 

  26. Ebrahimian, B., Noorzad, A.: Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour. In: IOP Conference Series. Materials Science and Engineering, vol. 10. (2010). doi:10.1088/1757-899X/10/1/012082

  27. Ebrahimian, B., Noorzad, A.: Numerical investigation on polar effects in localized shear zone. Key Eng. Mater. 452–453, 381–384 (2011)

    Google Scholar 

  28. Ebrahimian, B., Bauer, E.: Numerical simulation of the effect of interface friction of a bounding structure on shear deformation in a granular Soil. Int. J. Numer. Anal. Methods Geomech. 36(2), 1486–1506 (2012)

    Article  Google Scholar 

  29. Ebrahimian, B., Noorzad, A., Alsaleh, M.I.: Modeling shear localization along granular soil-structure interfaces using elasto-plastic Cosserat continuum. Int. J. Solids Struct. 49, 257–278 (2012a)

    Article  MATH  Google Scholar 

  30. Ebrahimian, B., Noorzad, A., Alsaleh, M.I.: FE simulation of shear localization along granular soil-structure interfaces using micro-polar elasto-plasticity. Mech. Res. Commun. 39, 28–34 (2012b)

    Article  MATH  Google Scholar 

  31. Ebrahimian, B., Noorzad, A., Alsaleh, M.I.: Effects of periodic fluctuations of micro-polar boundary conditions on shear localizations in granular soil-structure interaction. Int. J. Numer. Anal. Methods Geomech. 36, 855–880 (2012c)

    Article  MATH  Google Scholar 

  32. Ebrahimian, B.: Numerical investigations of shear banding in granular materials. In: Proceeding of 10th HSTAM International Congress on Mechanics, Paper No. 103, Chania, Crete, Greece (2013)

  33. Ebrahimian, B., Noorzad, A.: Numerical investigations of shear strain localization in an elasto-plastic Cosserat material. In: Proceeding of 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, pp. 703–706 (2013)

  34. Ebrahimian, B.: Evolution of shear localization in an elasto-plastic cosserat material under shearing. Key Eng. Mater. 577–578, 21–24 (2014)

    Google Scholar 

  35. Ebrahimian, B., Bauer, E.: Numerical analysis of interface shear test box size effect on shear behavior of soil specimen using micro-polar continuum approach. In: Chau, K., Zhao, J., (eds.) Proceeding of 10th International Workshop on Bifurcation and Degradation in Geomaterials (IWBDG 2014), pp. 143–148. Springer, (2015)

  36. Frost, J., Han, J.: Behavior of interfaces between fiber-reinforced polymers and sands. J. Geotech. Geoenviron. Eng. ASCE 125(8), 633–640 (1999)

    Article  Google Scholar 

  37. Frost, J.D., Lee, S.W., Cargill, P.E.: The evolution of sand structure adjacent to geomembranes. In: Proceeding of Geosynthetics Conference, vol. 99, pp. 559–573. (1999)

  38. Frost, J.D., DeJong, J.T., Recalde, M.: Shear failure behavior of granular-continuum interfaces. Eng. Fract. Mech. 69, 2029–2048 (2002)

    Article  Google Scholar 

  39. Frost, J., DeJong, J.: In situ assessment of role of surface roughness on interface response. J. Geotech. Geoenviron. Eng. ASCE 131(4), 498–511 (2005)

    Article  Google Scholar 

  40. Gudehus, G.: Physical Soil Mechanics. Springer, Heidelberg (2008)

    Google Scholar 

  41. Guler, M., Edil, T.B., Bosscher, P.J.: Measurement of particle movement in granular soils using image analysis. J. Comput. Civil Eng. ASCE 13(2), 116–122 (1999)

    Article  Google Scholar 

  42. Hu, L., Pu, J.: Application of damage model for soil-structure interface. Comput. Geotech. 30, 165–183 (2003)

    Article  Google Scholar 

  43. Hu, L., Pu, J.: Testing and modeling of soil-structure interface. J. Geotech. Geoenviron. Eng. ASCE 130(8), 851–860 (2004)

    Article  Google Scholar 

  44. Huang, W.: Hypoplastic modelling of shear localization in granular materials. Ph.D. Dissertation. Graz University of Technology, Graz, Austria (2000)

  45. Huang, W., Bauer, E.: Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Methods Geomech. 27, 325–352 (2003)

    Article  MATH  Google Scholar 

  46. Huang, W., Bauer, E., Scott, S.W.: Behavior of interfacial layer along granular soil-structure interfaces. Struct. Eng. Mech. 15(3), 315–329 (2003)

    Article  Google Scholar 

  47. Huang, W., Huang, L., Sheng, D., Sloan, S.: DEM modelling of shear localization in a plane Couette shear test of granular materials. Acta Geotech. 10(3), 389–397 (2015)

    Article  Google Scholar 

  48. Kim, M.K., Lade, P.V.: Single hardening constitutive model for frictional materials. Comput. Geotech. 5, 307–324 (1988)

    Article  Google Scholar 

  49. Kishida, H., Uesugi, M.: Tests of the interface between sand and steel in the simple shear apparatus. Géotechnique 37, 45–52 (1987)

    Article  Google Scholar 

  50. Kitsabunnarat, A.: Predicting the performance of geosynthetic-reinforced soil retaining walls under working stress conditions and at failure. Ph.D. Dissertation. University of Wisconsin-Milwaukee, Milwaukee, USA (2008)

  51. Kitsabunnarat, A., Alsaleh, M., Helwany, S.: Capturing strain localization in reinforced soils. Acta Geotech. 3, 175–190 (2008)

    Article  Google Scholar 

  52. Koval, G., Chevoir, F., Roux, J.N., Sulem, J., Corfdir, A.: Interface roughness effect on slow cyclic annular shear of granular materials. Granul. Matter 13, 525–540 (2011)

    Article  Google Scholar 

  53. Lade, P.V., Nelson, R.B.: Modeling the elastic behavior of granular materials. Int. J. Numer. Anal. Methods Geomech. 11, 521–542 (1987)

    Article  Google Scholar 

  54. Lade, P.V., Kim, M.K.: Single hardening plasticity model for frictional materials. Comput. Geotech. 6, 13–29 (1988)

    Article  Google Scholar 

  55. Lashkari, A.: Modeling of sand-structure interfaces under rotational shear. Mech. Res. Commun. 37(1), 32–37 (2010)

    Article  MATH  Google Scholar 

  56. Lehane, B., Jardine, R., Bond, A., Frank, R.: Mechanisms of shaft friction in sand from instrumented pile tests. Geotech. Test. J. 119(1), 19–35 (1993)

    Google Scholar 

  57. Liu, H., Song, E., Ling, H.I.: Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics. Mech. Res. Commun. 33, 515–531 (2006)

    Article  MATH  Google Scholar 

  58. Mühlhaus, H.B.: Shear band analysis in granular materials by Cosserat theory. Ing. Archiv 56, 389–399 (1986)

    Article  Google Scholar 

  59. Mühlhaus, H.B., Vardoulakis, I.: The thickness of shear bands in granular materials. Géotechnique 37, 271–283 (1987)

    Article  Google Scholar 

  60. Mühlhaus, H.B.: Application of Cosserat theory in numerical solutions of limit load problems. Ing. Archiv 59, 124–137 (1989)

    Article  Google Scholar 

  61. Nübel, K.: Experimental and numerical investigation of shear localization in granular material. Ph.D. Dissertation. University of Karlsruhe, Karlsruhe, Germany (2002)

  62. Oda, M.: Micro-fabric and couple stress in shear bands of granular materials. In: Thornton, C. (ed.) Powders and Grains, pp. 161–167. Balkema, Rotterdam (1993)

    Google Scholar 

  63. O’Rourke, T.D., Druschel, S.J., Netravali, A.N.: Shear strength characteristics of sand-polymer interfaces. J. Geotech. Eng. ASCE 116(3), 451–469 (1990)

    Article  Google Scholar 

  64. Paikowsky, S., Player, C.M., Connors, P.J.: A dual interface apparatus for testing unrestricted friction of soil along solid surfaces. Geotech. Test. J. 18(2), 168–193 (1995)

    Article  Google Scholar 

  65. Potyondy, J.G.: Skin friction between various soils and construction materials. Géotechnique 2(4), 339–353 (1961)

    Article  Google Scholar 

  66. Tejchman, J., Wu, W.: Numerical study on shear band patterning in a Cosserat continuum. Acta Mech. 99, 61–74 (1993)

    Article  MATH  Google Scholar 

  67. Tejchman, J., Wu, W.: Experimental and numerical study of sand-steel interfaces. Int. J. Numer. Anal. Methods Geomech. 19, 513–536 (1995)

    Article  Google Scholar 

  68. Tejchman, J., Bauer, E.: Numerical simulation of shear band formation with a polar hypoplastic model. Comput. Geotech. 19(3), 221–244 (1996)

    Article  Google Scholar 

  69. Tejchman, J.: Modelling of shear localisation and autogeneous dynamic effects in granular bodies. In: Gudehus, G., Natau, O. (eds.) Publication Series of the Institute of Soil and Rock Mechanics, vol. 140, pp. 1–353. University Karlsruhe, Karlsruhe (1997)

    Google Scholar 

  70. Tejchman, J.: Behaviour of granular bodies in induced shear zones. Granul. Matter 2(2), 77–96 (2000)

    Article  Google Scholar 

  71. Tejchman, J., Gudehus, G.: Shearing of a narrow granular layer with polar quantities. Int. J. Numer. Anal. Methods Geomech. 76(2), 513–536 (2001)

    MATH  Google Scholar 

  72. Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R. (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Berlin (2008)

    Google Scholar 

  73. Tejchman, J., Wu, W.: FE-investigations of micro-polar boundary conditions along interface between soil and structure. Granul. Matter 12(4), 399–410 (2010)

    Article  MATH  Google Scholar 

  74. Uesugi, M., Kishida, H.: Influential factors of friction between steel and dry sands. Soils Found. 26(2), 33–46 (1986a)

    Article  Google Scholar 

  75. Uesugi, M., Kishida, H.: Frictional resistance at yield between dry sand and mild steel. Soils Found. 26(4), 139–149 (1986b)

    Article  Google Scholar 

  76. Uesugi, M., Kishida, H., Tsubakihara, Y.: Behavior of sand particles in sand-steel friction. Soils Found. 28(1), 107–118 (1988)

    Article  Google Scholar 

  77. Unterreiner, P., Vardoulakis, I., Boulon, M., Sulem, J.: Essential features of a Cosserat continuum in interfacial localisation. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Proceeding of 3rd International Workshop on Localization and Bifurcation Theory for Soils and Rocks, pp. 141–155. Balkema, Rotterdam (1994)

  78. Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academic & Professional (an imprint of Chapman & Hall), Glasgow, London (1995)

    Google Scholar 

  79. Vardoulakis, I., Unterreiner, P.: Interfacial localisation in simple shear tests on a granular medium modelled as a Cosserat continuum. In: Selvadurai, A.P.S., Boulon, M.J. (eds.) Proceeding of Mechanics of Geomaterial Interfaces, vol. 42, pp. 487–512. Elsevier Science B.V (1995)

  80. Vermeer, P.A.: Frictional slip and non-associated plasticity. Scand. J. Metall. 12, 268–276 (1983)

    Google Scholar 

  81. Voyiadjis, J., Alsaleh, M., Alshibli, K.: Evolving internal length scales in plastic strain localization for granular materials. Int. J. Plasticity 21, 2000–2024 (2005)

    Article  MATH  Google Scholar 

  82. Westgate, Z.J., DeJong, J.T.: Evolution of sand-structure interface response during monotonic shear using particle image velocimetry. In: Proceeding of Geo-Congress Atlanta 2006—Role of Geotechnical Engineering in the Information Technology Age. (2006)

  83. Wójcik, M., Tejchman, J.: Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technol. 192, 298–310 (2009)

    Article  Google Scholar 

  84. Zhang, G., Liang, D., Zhang, J.: Image analysis measurement of soil particle movement during a soil-structure interface test. Comput. Geotech. 33, 248–259 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Ebrahimian.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimian, B., Noorzad, A. & Alsaleh, M.I. Modeling interface shear behavior of granular materials using micro-polar continuum approach. Continuum Mech. Thermodyn. 30, 95–126 (2018). https://doi.org/10.1007/s00161-017-0588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0588-4

Keywords

Navigation