Skip to main content
Log in

Micromorphic approach for gradient-extended thermo-elastic–plastic solids in the logarithmic strain space

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The coupled thermo-mechanical strain gradient plasticity theory that accounts for microstructure-based size effects is outlined within this work. It extends the recent work of Miehe et al. (Comput Methods Appl Mech Eng 268:704–734, 2014) to account for thermal effects at finite strains. From the computational viewpoint, the finite element design of the coupled problem is not straightforward and requires additional strategies due to the difficulties near the elastic–plastic boundaries. To simplify the finite element formulation, we extend it toward the micromorphic approach to gradient thermo-plasticity model in the logarithmic strain space. The key point is the introduction of dual local–global field variables via a penalty method, where only the global fields are restricted by boundary conditions. Hence, the problem of restricting the gradient variable to the plastic domain is relaxed, which makes the formulation very attractive for finite element implementation as discussed in Forest (J Eng Mech 135:117–131, 2009) and Miehe et al. (Philos Trans R Soc A Math Phys Eng Sci 374:20150170, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Miehe, C., Welschinger, F., Aldakheel, F.: Variational gradient plasticity at finite strains. Part II: local–global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput. Methods Appl. Mech. Eng. 268, 704–734 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135, 117–131 (2009)

    Article  Google Scholar 

  3. Miehe, C., Teichtmeister, S., Aldakheel, F.: Phase-field modeling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150170 (2016). doi:10.1098/rsta.2015.0170

  4. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  5. de Borst, R., Mühlhaus, H.B.: Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–539 (1992)

    Article  MATH  Google Scholar 

  6. Liebe, T., Steinmann, P.: Theory and numerics of a thermodynamically consistent framework for geometrically linear gradient plasticity. Int. J. Numer. Methods Eng. 51, 1437–1467 (2001)

    Article  MATH  Google Scholar 

  7. Engelen, R.A.B., Geers, M.G.D., Baaijens, F.P.T.: Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behavior. Int. J. Plast. 19, 403–433 (2003)

    Article  MATH  Google Scholar 

  8. Gurtin, E.: A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int. J. Plast. 24, 702–725 (2008)

    Article  MATH  Google Scholar 

  9. Svendsen, B., Bargmann, S.: On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58, 1253–1271 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Wulfinghoff, S., Böhlke, T.: Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2012)

  11. Klusemann, B., Yalcinkaya, T.: Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex helmholtz energy. Int. J. Plast. 48, 168–188 (2013)

    Article  Google Scholar 

  12. Miehe, C., Mauthe, S., Hildebrand, F.E.: Variational gradient plasticity at finite strains. Part III: local–global updates and regularization techniques in multiplicative plasticity for single crystals. Comput. Methods Appl. Mech. Eng. 268, 735–762 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  14. Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Anand, L., Aslan, O., Chester, S.A.: A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands. Int. J. Plast. 30–31, 116–143 (2012)

    Article  Google Scholar 

  16. Reddy, B., Ebobisse, F., McBride, A.: Well-posedness of a model of strain gradient plasticity for plastically irrotational materials. Int. J. Plast. 24, 55–73 (2008)

    Article  MATH  Google Scholar 

  17. Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory. Part I: scalar plastic multiplier. J. Mech. Phys. Solids 57, 161–177 (2009a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory. Part II: tensorial plastic multiplier. J. Mech. Phys. Solids 57, 1045–1057 (2009b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Polizzotto, C.: A nonlocal strain gradient plasticity theory for finite deformations. Int. J. Plast. 25, 1280–1300 (2009)

    Article  MATH  Google Scholar 

  20. Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 472 (2016)

  21. Voyiadjis, G.Z., Pekmezi, G., Deliktas, B.: Nonlocal gradient-dependent modeling of plasticity with anisotropic hardening. Int. J. Plast. 26, 1335–1356 (2010)

    Article  MATH  Google Scholar 

  22. Kuroda, M., Tvergaard, V.: An alternative treatment of phenomenological higher-order strain-gradient plasticity theory. Int. J. Plast. 26, 507–515 (2010)

    Article  MATH  Google Scholar 

  23. Miehe, C., Aldakheel, F., Mauthe, S.: Mixed variational principles and robust finite element implementations of gradient plasticity at small strains. Int. J. Numer. Methods Eng. 94, 1037–1074 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wriggers, P., Miehe, C., Kleiber, M., Simo, J.: On the coupled thermomechanical treatment of necking problems via finite element methods. Int. J. Numer. Methods Eng. 33, 869–883 (1992)

    Article  MATH  Google Scholar 

  25. Anand, L., Ames, N.M., Srivastava, V., Chester, S.A.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: formulation. Int. J. Plast. 25, 1474–1494 (2009)

    Article  MATH  Google Scholar 

  26. Canadija, M., Mosler, J.: On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Solids Struct. 48, 1120–1129 (2011)

    Article  MATH  Google Scholar 

  27. Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54, 401–424 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Stainier, L., Ortiz, M.: Study and validation of thermomechanical coupling in finite strain visco-plasticity. Int. J. Solids Struct. 47, 704–715 (2010)

    Article  MATH  Google Scholar 

  29. Voyiadjis, Z., Faghihi, D.: Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales. Int. J. Plast. 30–31, 218–247 (2012)

    Article  Google Scholar 

  30. Faghihi, D., Voyiadjis, Z., Park, T.: Coupled thermomechanical modeling of small volume fcc metals. J. Eng. Mater. Technol. 135, 1–17 (2013)

    Article  Google Scholar 

  31. Forest, S., Aifantis, E.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010)

    Article  MATH  Google Scholar 

  32. Bertram, A., Forest, S.: The thermodynamics of gradient elastoplasticity. Contin. Mech. Thermodyn. 26, 269–286 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wcislo, B., Pamin, J.: Local and non-local thermomechanical modeling of elastic–plastic materials undergoing large strains. Int. J. Numer. Methods Eng. 109, 102–124 (2016)

    Article  MathSciNet  Google Scholar 

  34. Miehe, C., Aldakheel, F., Teichtmeister, S.: Phase-field modeling of ductile fracture at finite strains. A robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization. Int. J. Numer. Methods Eng. (2016). doi:10.1002/nme.5484

    MATH  Google Scholar 

  35. Aldakheel, F.: Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture. Ph.D. thesis, Institute of Applied Mechanics (CE), Chair I, University of Stuttgart (2016). doi:10.18419/opus-8803

  36. Aldakheel, F., Miehe, C.: Coupled thermomechanical response of gradient plasticity. Int. J. Plast. 91, 1–24 (2017)

  37. Miehe, C., Apel, N., Lambrecht, M.: Anisotropic additive plasticity in the logarithmic strain space. Modularkinematic formulation and implementation based on incremental minimization principles for standard materials. Comput. Methods Appl. Mech. Eng. 191, 5383–5425 (2002)

    Article  ADS  MATH  Google Scholar 

  38. Geers, M.G.D., Peerlings, R.H.J., Brekelmans, W.A.M., de Borst, R.: Phenomenological nonlocal approaches based on implicit gradient-enhanced damage. Acta Mech. 144, 1–15 (2000)

    Article  MATH  Google Scholar 

  39. Peerlings, R.H.J., Geers, M.G.D., de Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38, 7723–7746 (2001)

    Article  MATH  Google Scholar 

  40. Peerlings, R.H.J., Massart, T.J., Geers, M.G.D.: A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput. Methods Appl. Mech. Eng. 193, 3403–3417 (2004)

    Article  ADS  MATH  Google Scholar 

  41. Simó, J., Miehe, C.: Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)

    Article  ADS  MATH  Google Scholar 

  42. Boyce, M.C., Montagut, E.L., Argon, A.S.: The effects of thermomechanical coupling on the cold drawing process of glassy polymers. Polym. Eng. Sci. 32, 1073–1085 (1992)

    Article  Google Scholar 

  43. Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun. Numer. Methods Eng. 17, 337–353 (2001)

    Article  MATH  Google Scholar 

  44. Hallquist, J.O.: Nike 2D: An implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids. Rept. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore, CA (1984)

  45. Simó, J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 68, 1–31 (1988)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Aldakheel.

Additional information

Communicated by Andreas Öchsner.

This paper is dedicated to the memory of the late Professor Christian Miehe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldakheel, F. Micromorphic approach for gradient-extended thermo-elastic–plastic solids in the logarithmic strain space. Continuum Mech. Thermodyn. 29, 1207–1217 (2017). https://doi.org/10.1007/s00161-017-0571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0571-0

Keywords

Navigation