Skip to main content
Log in

A modelling approach for the heterogeneous oxidation of elastomers

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry’s law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side, further diffusion of oxygen into the material is described by a model based on Fick’s law, which is modified by a reaction term. The evolved diffusion-reaction equation depends on the ageing temperature as well as on the progress of ageing and is able to describe diffusion-limited oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamaruddin, S., Le Gac, P.-Y., Marco, Y., Muhr, A.H.: Formation of crust on natural rubber after ageing. In: Jerrams, S., Murphy, N.M. (eds.) Constitutive Models for Rubber VII: Proceedings of the 7th European Conference on Constitutive Models for Rubber, ECCMR, Dublin, Ireland, 23 September 2011, pp. 197–203. CRC Press, Boca Raton (2012)

    Google Scholar 

  2. Celina, M., Wise, J., Ottesen, D., Gillen, K., Clough, R.: Correlation of chemical and mechanical property changes during oxidative degradation of neoprene. Polym. Degrad. Stab. 68(2), 171–184 (2000)

    Article  Google Scholar 

  3. Hoffman, E.N., Fisher, D., Daugherty, W.L., Skidmore, E.T., Dunn, K.A.: Aging performance of model 9975 package fluoroelastomer O-rings. In: Conference: INMM 52nd Annual Meeting (2011)

  4. Assink, R.A., Celina, M., Skutnik, J.M., Harris, D.J.: Use of a respirometer to measure oxidation rates of polymeric materials at ambient temperatures. Polymer 46(25), 11648–11654 (2005)

    Article  Google Scholar 

  5. Tobolsky, A.V.: Mechanische Eigenschaften und Struktur von Polymeren. Berliner Union, Stuttgart (1967)

    Google Scholar 

  6. Verdu, J.: Oxidative Ageing of Polymers. Wiley, London (2012)

    Book  Google Scholar 

  7. Gillen, K.T., Clough, R.L.: Rigorous experimental confirmation of a theoretical model for diffusion-limited oxidation. Polymer 33(20), 4358–4365 (1992)

    Article  Google Scholar 

  8. Wise, J., Gillen, K.T., Clough, R.L.: An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers. Polym. Degrad. Stab. 49(3), 403–418 (1995)

    Article  Google Scholar 

  9. Steinke, L.: Ein Beitrag zur Simulation der thermo-oxidativen Alterung von Elastomeren. VDI-Verl, Düsseldorf (2013)

    Google Scholar 

  10. Ehrenstein, G.W., Pongratz, S.: Beständigkeit von Kunststoffen. Hanser, München (2007)

    Book  Google Scholar 

  11. Herzig, A., Johlitz, M., Lion, A.: Consumption and diffusion of oxygen during the thermoxidative ageing process of elastomers. Mat. wiss. u. Werkstofftech 47(5–6), 376–387 (2016)

    Article  Google Scholar 

  12. Van Amerongen, G.J.: Influence of structure of elastomers on their permeability to gases. J. Polym. Sci. 5(3), 307–332 (1950)

    Article  ADS  Google Scholar 

  13. Herzig, A., Johlitz, M., Lion, A.: Experimental Investigation on the consumption of oxygen and its diffusion into elastomers during the process of ageing. In: Marvalová, B., Petriková, I. (eds.) Constitutive Models for Rubbers: Proceedings of the 9th European conference on constitutive models for rubber (ECCMR), pp. 23–28. CRC Press LLC, London (2015)

    Chapter  Google Scholar 

  14. Scheirs, J., Bigger, S.W., Billingham, N.C.: A review of oxygen uptake techniques for measuring polyolefin oxidation. Polym. Testing 14(3), 211–241 (1995)

    Article  Google Scholar 

  15. Prieß, C., Katzenmaier, V., Kreiselmaier, R., Traber, B., Beck, K.: Analyse des oxidativen Alterungsverhaltens elastomerer Werkstoffe: Gegenüberstellung von NMR, Spannungsrelaxation und Chemilumineszenz. Kautschuk Gummi Kunststoff, pp. 16–21, (2014)

  16. Celina, M., George, G.A., Lacey, D.J., Billingham, N.C.: Chemiluminescence imaging of the oxidation of polypropylene. Polym. Degrad. Stab. 47(2), 311–317 (1995)

    Article  Google Scholar 

  17. Fernandes, V., De Focatiis, D.: A swelling study of process-induced and deformation-induced anisotropy of filled rubbers. In: Marvalová, B., Petriková, I. (eds.) Constitutive Models for Rubbers: Proceedings of the 9th European conference on constitutive models for rubber (ECCMR), pp. 141–146. CRC Pr I Llc, London (2015)

    Chapter  Google Scholar 

  18. Gillen, K.T., Celina, M., Bernstein, R.: Validation of improved methods for predicting long-term elastomeric seal lifetimes from compression stress-relaxation and oxygen consumption techniques. Polym. Degrad. Stab. 82(1), 25–35 (2003)

    Article  Google Scholar 

  19. McKeen, L.W.: Introduction to permeation of plastics and elastomers. In: McKeen, L.W., Massey, L.K. (eds.) Permeability Properties of Plastics and Elastomers, 3rd edn, pp. 1–20. Elsevier, Amsterdam (2012)

    Google Scholar 

  20. Lin, H., Freeman, B.D.: Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate). Macromolecules 39(10), 3568–3580 (2006)

    Article  ADS  Google Scholar 

  21. Vieyres, A., et al.: Sulfur-cured natural rubber elastomer networks: correlating cross-link density, chain orientation, and mechanical response by combined techniques. Macromolecules 46(3), 889–899 (2013)

    Article  ADS  Google Scholar 

  22. Celina, M.C.: Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polym. Degrad. Stab. 98(12), 2419–2429 (2013)

    Article  Google Scholar 

  23. Celina, M., Graham, A.C., Gillen, K.T., Assink, R.A., Minier, L.M.: Thermal degradation studies of a polyurethane propellant binder. Rubber Chem. Technol. 73(4), 678–693 (2000)

    Article  Google Scholar 

  24. Celina, M., Wise, J., Ottesen, D.K., Gillen, K.T., Clough, R.L.: Oxidation profiles of thermally aged nitrile rubber. Polym. Degrad. Stab. 60(2–3), 493–504 (1998)

    Article  Google Scholar 

  25. Le Saux, V., Le Gac, P.Y., Marco, Y., Calloch, S.: Limits in the validity of Arrhenius predictions for field ageing of a silica filled polychloroprene in a marine environment. Polym. Degrad. Stab. 99, 254–261 (2014)

    Article  Google Scholar 

  26. Rothert, H., Kaliske, M., Nasdala, L.: Entwicklung von Materialmodellen zur Alterung von Elastomerwerkstoffen unter besonderer Berücksichtigung des Sauerstoffeinflusses. ISD, Hannover (2005)

    Google Scholar 

  27. McKeen, L.W.: Elastomers and rubbers. In: McKeen, L.W., Massey, L.K. (eds.) Permeability Properties of Plastics and Elastomers, 3rd edn, pp. 251–285. Elsevier, Amsterdam (2012)

    Chapter  Google Scholar 

  28. Herzig, A., Johlitz, M., Lion, A.: An experimental set-up to analyse the oxygen consumption of elastomers during ageing by using a differential oxygen analyser. Continuum Mech. Thermodyn. 27(6), 1009–1017 (2015)

    Article  ADS  Google Scholar 

  29. Kamaruddin, S., Muhr, A.H., Le Gac, P.Y., Marco, Y., Le Saux, V.: Modelling naturally aged NR mouldings. In: Gil-Negrete, N., Alonso, A. (eds.) Constitutive Models for Rubbers: Proceedings of the 8th European conference on constitutive models for rubber (ECCMR), pp. 37–42. CRC Pr I Llc, London (2013)

    Chapter  Google Scholar 

  30. Lehmann, T.: IR-Spektroskopie: Infrarotspektroskopie. Institut für Chemie und Biochemie, Berlin (2010)

    Google Scholar 

  31. Günzler, H., Williams, A.: Handbook of Analytical Techniques. Wiley, Weinheim, New York (2001)

    Book  Google Scholar 

  32. Mailhot, B., Bussière, P.-O., Rivaton, A., Morlat-Thérias, S., Gardette, J.-L.: Depth profiling by AFM nanoindentations and micro-FTIR spectroscopy for the study of polymer ageing. Macromol. Rapid Commun. 25(2), 436–440 (2004)

    Article  Google Scholar 

  33. Johlitz, M.: On the representation of ageing phenomena. J. Adhes. 88(7), 620–648 (2012)

    Article  Google Scholar 

  34. Johlitz, M.: Zum Alterungsverhalten von Polymeren: Experimentell gestützte, thermo-chemomechanische Modellbildung und numerische Simulation. Habilitationsschrift, Fakultät für Luft- und Raumfahrttechnik, Universität der Bundeswehr München, Neubiberg (2015)

    Google Scholar 

Download references

Acknowledgements

The support of the Institute for Building Materials with its head Prof. Christian Thienel, Universität der Bundeswehr München, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Herzig.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzig, A., Sekerakova, L., Johlitz, M. et al. A modelling approach for the heterogeneous oxidation of elastomers. Continuum Mech. Thermodyn. 29, 1149–1161 (2017). https://doi.org/10.1007/s00161-017-0568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0568-8

Keywords

Navigation