Skip to main content
Log in

Thermodynamic coupling between gradient elasticity and a Cahn–Hilliard type of diffusion: size-dependent spinodal gaps

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

An Erratum to this article was published on 05 May 2017

This article has been updated

Abstract

In the electrode materials of lithium ion batteries, the large variations of Li concentration during the charge and discharge processes are often accompanied by phase separations to lithium-rich and lithium-poor states. In particular, when the composition of the material moves into the spinodal region (linearly unstable uniform compositions) or into the miscibility gap (metastable uniform compositions), it tends to decompose spontaneously under composition fluctuations. If the lattice mismatch of the two phases is not negligible, coherency strains arise affecting the decomposition process. Furthermore, when the dimensions of a specimen or a grain reduce down to the nanometer level, the phase transition mechanisms are also substantially influenced by the domain size. This size effect is interpreted in the present article by developing a thermodynamically consistent model of gradient elastodiffusion. The proposed formulation is based on the coupling of the standard Cahn–Hilliard type of diffusion and a simple gradient elasticity model that includes the gradient of volumetric strain in the expression of the Helmholtz free energy density. An initial boundary value problem is derived in terms of concentration and displacement fields, and linear stability analysis is employed to determine the contribution of concentration and strain gradient terms on the instability leading to spinodal decomposition. It is shown that the theoretical predictions are in accordance with the experimental trends, i.e., the spinodal concentration range shrinks (i.e., the tendency for phase separation is reduced) as the crystal size decreases. Moreover, depending on the interplay between the strain and the concentration gradient coefficients, the spinodal region can be completely suppressed below a critical crystal size. Spinodal characteristic length and time are also evaluated by considering the dominant instability mode during the primary stages of the decomposition process, and it is found that they are increasing functions of the strain gradient coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 05 May 2017

    An erratum to this article has been published.

References

  1. Meethong, N., Huang, H.-Y.S., Carter, W.C., Chiang, Y.M.: Size-dependent lithium miscibility gap in nanoscale Li\(_{1-x}\)FePO\(_{4}\). Electrochem. Solid State Lett. 10(5), A134–A138 (2007). doi:10.1149/1.2710960

    Article  Google Scholar 

  2. Kobayashi, G., Nishimura, S.I., Park, M.S., Kanno, R., Yashima, M., Ida, T., Yamada, A.: Isolation of solid solution phases in size-controlled Li\(_{x}\)FePO\(_{4}\) at room temperature. Adv. Funct. Mater. 19(3), 395–403 (2009). doi:10.1002/adfm.200801522

    Article  Google Scholar 

  3. Orvananos, B., Yu, H.-C., Malik, R., Abdellahi, A., Grey, C.P., Ceder, G., Thornton, K.: Effect of a size-dependent equilibrium potential on nano-LiFePO\(_{4}\) particle interactions. J. Electrochem. Soc. 162(9), A1718–A1724 (2015). doi:10.1149/2.0161509jes

    Article  Google Scholar 

  4. Wagemaker, M., Borghols, W.J.H., Mulder, F.M.: Large impact of particle size on insertion reactions. A case for anatase Li\(_{x}\)TiO\(_{2}\). J. Am. Chem. Soc. 129(14), 4323–4327 (2007). doi:10.1021/ja067733p

    Article  Google Scholar 

  5. Schimmel, H.G., Huot, J., Chapon, L.C., Tichelaar, F.D., Mulder, F.M.: Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. J. Am. Chem. Soc. 127(41), 14348–14354 (2005). doi:10.1021/ja051508a

    Article  Google Scholar 

  6. Han, B.C., Van der Ven, A., Morgan, D., Ceder, G.: Electrochemical modeling of intercalation processes with phase field models. Electrochim. Acta 49(26), 4691–4699 (2004). doi:10.1016/j.electacta.2004.05.024

    Article  Google Scholar 

  7. Burch, D., Bazant, M.Z.: Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. Nano Lett. 9(11), 3795–3800 (2009). doi:10.1021/nl9019787

    Article  ADS  Google Scholar 

  8. Stanton, L.G., Bazant, M.Z.: Phase separation with anisotropic coherency strain. arXiv: Cond-Mat. Mtrl-Sci. (2012). arXiv:1202.1626v1

  9. Cogswell, D.A., Bazant, M.Z.: Coherency strain and the kinetics of phase separation in LiFePO\(_{4}\) nanoparticles. ACS Nano 6(3), 2215–2225 (2012). doi:10.1021/nn204177u

    Article  Google Scholar 

  10. Anand, L.: A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J. Mech. Phys. Solids 60, 1983–2002 (2012). doi:10.1016/j.jmps.2012.08.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958). doi:10.1063/1.1744102

    Article  ADS  Google Scholar 

  12. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9(9), 795–801 (1961). doi:10.1016/0001-6160(61)90182-1

    Article  Google Scholar 

  13. Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154(10), A910–A916 (2007). doi:10.1149/1.2759840

    Article  Google Scholar 

  14. Purkayastha, R., McMeeking, R.: A parameter study of intercalation of lithium into storage particles in a lithium-ion battery. Comput. Mater. Sci. 80, 2–14 (2013). doi:10.1016/j.commatsci.2012.11.050

    Article  Google Scholar 

  15. Zhu, H.T., Zbib, H.M., Aifantis, E.C.: Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech. 121(1–4), 165–176 (1997). doi:10.1007/bf01262530

    Article  MATH  Google Scholar 

  16. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999). doi:10.1007/978-94-011-4659-3_16

    Article  Google Scholar 

  17. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994). doi:10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  18. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids. 49, 2245–2271 (2001). doi:10.1016/S0022-5096(01)00049-7

    Article  ADS  MATH  Google Scholar 

  19. Tsagrakis, I., Aifantis, E.C.: Recent developments in gradient plasticity. Part I: formulation and size effects. J. Eng. Mater. Technol. 124(3), 352–357 (2002). doi:10.1115/1.1479695

    Article  Google Scholar 

  20. Tsagrakis, I., Konstantinidis, A., Aifantis, E.C.: Strain gradient and wavelet interpretation of size effects in yield and strength. Mech. Mater. 35(8), 733–745 (2003). doi:10.1016/s0167-6636(02)00205-3

    Article  Google Scholar 

  21. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992). doi:10.1016/0020-7225(92)90141-3

    Article  MATH  Google Scholar 

  22. Aifantis, E.C.: Gradient effects at macro, micro and nano scales. J. Mech. Behav. Mater. 5(3), 355–375 (1994). doi:10.1515/jmbm.1994.5.3.355

    Article  Google Scholar 

  23. Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997). doi:10.1515/jmbm.1997.8.3.231

    Article  Google Scholar 

  24. Altan, S.B., Aifantis, E.C.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Metall. Mater. 26(2), 319–324 (1992). doi:10.1016/0956-716x(92)90194-j

    Article  Google Scholar 

  25. Ru, C.Q., Aifantis, E.C.: A simple approach to solve boundary value problems in gradient elasticity. Acta Mech. 101(1–4), 59–68 (1993). doi:10.1007/bf01175597

    Article  MathSciNet  MATH  Google Scholar 

  26. Gutkin, M.Y., Aifantis, E.C.: Dislocations in the theory of gradient elasticity. Scr. Mater. 40(5), 559–566 (1999). doi:10.1016/s1359-6462(98)00424-2

    Article  Google Scholar 

  27. Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D Nonlinear Phenom 92(3–4), 178–192 (1996). doi:10.1016/0167-2789(95)00173-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Garcke, H.: On a Cahn–Hilliard model for phase separation with elastic misfit. Ann. Inst. H. Poincaré Anal. Nonlinear 22(2), 165–185 (2005). doi:10.1016/j.anihpc.2004.07.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964). doi:10.1007/bf00248490

    Article  MathSciNet  MATH  Google Scholar 

  30. Svoboda, J., Turek, I., Fischer, F.D.: Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos. Mag. 85(31), 3699–3707 (2005). doi:10.1080/14786430500267760

    Article  ADS  Google Scholar 

  31. Hackl, K., Fischer, F.D., Svoboda, J.: A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials. Proc. R. Soc. A 467(2128), 1186–1196 (2011). doi:10.1098/rspa.2010.0179. Addendum: Proc. R. Soc. A 467(2132), 2422–2426 (2011). doi:10.1098/rspa.2011.0015

  32. Nauman, E.B., He, D.Q.: Nonlinear diffusion and phase separation. Chem. Eng. Sci. 56(6), 1999–2018 (2001). doi:10.1016/s0009-2509(01)00005-7

    Article  Google Scholar 

  33. Landau, L.D., Lifshitz, E.M.: Flow with small Reynolds numbers (§20). In: Fluid Mechanics (Vol. 6 of Course of Theoretical Physics, 2nd ed.), pp. 58–67. Pergamon Press, New York (1987). doi:10.1016/B978-0-08-033933-7.50010-6

  34. Chen, G., Song, X., Richardson, T.J.: Electron microscopy study of the LiFePO\(_{4}\) to FePO\(_{4}\) phase transition. Electrochem. Solid State Lett. 9(6), A295–A298 (2006). doi:10.1149/1.2192695

    Article  Google Scholar 

  35. Rousse, G., Rodriguez-Carvajal, J., Patoux, S., Masquelier, C.: Magnetic structures of the triphylite LiFePO\(_{4}\) and of its delithiated form FePO\(_{4}\). Chem. Mater. 15(21), 4082–4090 (2003). doi:10.1021/cm0300462

    Article  Google Scholar 

  36. Tsagrakis, I., Aifantis, E.C.: On the effect of strain gradient on adiabatic shear banding. Metall. Mater. Trans. A 46(10), 4459–4467 (2015). doi:10.1007/s11661-014-2586-5

    Article  Google Scholar 

  37. Triantafyllidis, N., Aifantis, E.C.: A gradient approach to localization of deformation I. Hyperelastic materials. J. Elast. 16(3), 225–237 (1986). doi:10.1007/bf00040814

    Article  MathSciNet  MATH  Google Scholar 

  38. Rudraraju, S., Van der Ven, A., Garikipati, K.: Mechanochemical spinodal decomposition: a phenomenological theory of phase transformations in multi-component, crystalline solids. NPJ Comput. Mater. 2, 16012 (2016). doi:10.1038/npjcompumats.2016.12

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support by the General Secretariat of Research and Technology (GSRT) of Greece and by the European Union under the projects “Shift of the Phase Equilibria in Nanograined Materials” (ERA-NET scheme, no.88839) and “Internal Length Gradient Mechanics across Scales and Materials: Theory, Experiments and Applications” (No. 88257) is acknowledged. The support of the Ministry of Education and Science of Russian Federation under Mega Grant Project “Fabrication and Study of Advanced Multi-Functional Metallic Materials with Extremely High Density of Defects” (No. 14.Z50.31.0039) to Togliatti State University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Tsagrakis.

Additional information

Communicated by Andreas Ö-chsner.

The original version of this article was revised: Unfortunately, Eq. (24) was incorrectly published in the original version and the same is corrected here.

An erratum to this article is available at https://doi.org/10.1007/s00161-017-0570-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsagrakis, I., Aifantis, E.C. Thermodynamic coupling between gradient elasticity and a Cahn–Hilliard type of diffusion: size-dependent spinodal gaps . Continuum Mech. Thermodyn. 29, 1181–1194 (2017). https://doi.org/10.1007/s00161-017-0565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0565-y

Keywords

Navigation