Skip to main content
Log in

Hamilton’s principle as inequality for inelastic bodies

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with Hamilton’s principle for inelastic bodies with conservative external forces. Inelasticity is described by internal variable theory by Rice (J Mech Phys Solids 19:433–455, 1971), and the influence of strain change on the temperature field is ignored. Unlike Hamilton’s principle for elastic bodies which has an explicit Lagrangian, Hamilton’s principle for inelastic bodies generally has no an explicit Lagrangian. Based on the entropy inequality, a quasi Hamilton’s principle for inelastic bodies is established in the form of inequality and with an explicit Lagrangian, which is just the Lagrangian for elastic bodies by replacing the strain energy with free energy. The quasi Hamilton’s principle for inelastic bodies states that the actual motion is distinguished by making the action an maximum. The evolution equations of internal variables can not be recovered from the quasi Hamilton’s principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anthony, K.H.: Hamilton’s action principle and thermodynamics of irreversible processes—a unifying procedure for reversible and irreversible processes. J. Non-Newton. Fluid Mech. 96, 291–339 (2001)

    Article  Google Scholar 

  2. Batra, G.: On Hamilton’s principle for thermo-elastic fluids and solids, and internal constraints in thermo-elasticity. J. Ration. Mech. Anal. 99, 37–59 (1987)

    Article  MathSciNet  Google Scholar 

  3. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    MATH  Google Scholar 

  4. Drucker, D.C.: A more fundamental approach to stress-strain relations. In: Proceedings of First U.S. National Congress of Applied Mechanics, ASME, pp. 487–497 (1951)

  5. Glavatskiy, K.S.: Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics. J. Chem. Phys. 142, 204106 (2015)

    Article  ADS  Google Scholar 

  6. Il’yushin, A.A.: On a postulate of plasticity. J. Appl. Math. Mech. 25, 746–750 (1961)

    Article  MathSciNet  Google Scholar 

  7. Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics. World Scientific, Singapore (2001)

    Book  Google Scholar 

  8. Kim, J., Dargush, G.F., Ju, Y.K.: Extended framework of Hamiltons principle for continuum dynamics. Int. J. Solids Struct. 50, 3418–3429 (2013)

    Article  Google Scholar 

  9. Kestin, J., Rice, J.R.: Paradoxes in the application of thermodynamics to strained solids. In: Stuart, E.B., et al. (eds.) A Critical Review of Thermodynamics, pp. 275–298. Mono Book, Baltimore (1970)

    Google Scholar 

  10. Kosinski, W., Perzyna, P.: On consequences of the principle of stationary action for dissipative bodies. Arch. Mech. 64, 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Leng, K.D., Yang, Q.: Generalized Hamilton’s principle for inelastic bodies within non-equilibrium thermodynamics. Entropy 13, 1904–1915 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. Maugin, G.A.: Internal variables and dissipative structures. J. Non-equilib. Thermodyn. 15, 173–192 (1990)

    Article  ADS  Google Scholar 

  13. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)

    ADS  MATH  Google Scholar 

  14. Maugin, G.A.: The Thermodynamics of Nonlinear Irreversible Behaviors. World Scientific, Singapore (1999)

    Book  Google Scholar 

  15. Maugin, G.A.: The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun. 69, 79–86 (2015)

    Article  Google Scholar 

  16. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, Band III/1, pp. 226–793. Springer, Berlin (1960)

    Google Scholar 

  17. Petryk, H.: Thermodynamic conditions for stability in materials with rate-independent dissipation. Philos. Trans. R. Soc. Lond. A 363, 2479–2515 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Reddy, J.N.: An Introduction to Continuum Mechanics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  19. Rice, J.R.: Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  ADS  Google Scholar 

  20. Rice, J.R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In: Argon, A.S. (ed.) Constitutive Equations in Plasticity, pp. 23–79. MIT Press, Cambridge (1975)

    Google Scholar 

  21. Van, P., Muschik, W.: Structure of variational principles in nonequilibrium thermodynamics. Phys. Rev. E 52, 3584–3590 (1995)

    Article  ADS  Google Scholar 

  22. Van, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-equilib. Thermodyn. 33, 235–254 (2008)

    Article  ADS  Google Scholar 

  23. Van, P.: Weakly nonlocal non-equilibrium thermodynamics-variational principles and second law. In: Soomere, T., Quak, E. (eds.) Applied Wave Mathematics, pp. 153–186. Springer, New York (2009)

    Chapter  Google Scholar 

  24. Vujanovic, B.: On one variational principle for irreversible phenomena. Acta Mech. 19, 259–275 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  25. Vujanovic, B.: A variational principle for non-conservative dynamical systems. ZAMM 55, 321–331 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  26. Yang, Q., Tham, L.G., Swoboda, G.: Normality structures with homogeneous kinetic rate laws. ASME J. Appl. Mech. 72, 322–329 (2005)

    Article  ADS  Google Scholar 

  27. Yang, Q., Wang, R.K., Xue, L.J.: Normality structures with thermodynamic equilibrium points. ASME J. Appl. Mech. 74, 965–971 (2007)

    Article  ADS  Google Scholar 

  28. Yang, Q., Bao, J.Q., Liu, Y.R.: Asymptotic stability in constrained configuration space for solids. J. Non-equilib. Thermodyn. 34, 155–170 (2009)

    ADS  MATH  Google Scholar 

  29. Yang, Q., Guan, F.H., Liu, Y.R.: Hamilton’s principle for Green-inelastic bodies. Mech. Res. Commun. 37, 696–699 (2010)

    Article  Google Scholar 

  30. Ziegler, H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Yang.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Lv, Q.C. & Liu, Y.R. Hamilton’s principle as inequality for inelastic bodies. Continuum Mech. Thermodyn. 29, 747–756 (2017). https://doi.org/10.1007/s00161-017-0557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0557-y

Keywords

Navigation