Skip to main content
Log in

Finite element modelling of woven composite failure modes at the mesoscopic scale: deterministic versus stochastic approaches

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mouritz, A.P., Bannister, M.K., Falzon, P.J., Leong, K.H.: Review of applications for advanced three-dimensional fibre textile composite. Compos. A 30(12), 1445–1461 (1999)

    Article  Google Scholar 

  2. Cox, B.N., Flanagan, G.: Handbook of Analytical Methods for Textile Composites. National Aeronautics Space Administration, Langley Research Center, Hampton (1997)

  3. Lomov, S., Ivanov, D., Verpoest, I., Zako, M., Nakai, H., Hiroshima, S.: Meso-FE modelling of textile composites: road map, data flow and algorithms. Compos. Sci. Technol. 67, 1870–1891 (2007)

    Article  Google Scholar 

  4. Dow, N.F., Ramnath, V., Rosen, B.W.: Analysis of Woven Fabrics for Reinforced Composite Materials. Technical report, Materials Sciences Corporation (1987)

  5. Lagzdins, A., Tamuzs, V., Teters, G., Kregers, A.: Orientational Averaging in Mechanics of Solids. Wiley, New York (1992)

    MATH  Google Scholar 

  6. Cox, B.N., Dadkhah, M.S.: The macroscopic elasticity of 3D woven composites. J. Compos. Mater. 29, 785–819 (1995)

    Article  ADS  Google Scholar 

  7. Bogdanovich, A.E.: Local mechanics concepts for composite material systems. In: IUTAM Symposium, pp. 355–382. Springer, Berlin (1992)

  8. Bogdanovich, A.E.: Three-dimensional variational theory of laminated composite plates and its implementation with bernstein basis functions. Comp. Methods Appl. Mech. Eng. 185, 279–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Verpoest, I., Lomov, S.: Virtual textile composites software wisetex: integration with micro-mechanical, permeability and structural analysis. Compos. Sci. Technol. 65, 2563–2574 (2005)

    Article  Google Scholar 

  10. Sherburn, M.: Geometric and Mechanical Modelling of Textiles. PhD thesis, University of Nottingham (2007)

  11. Stig, F., Hallström, S.: A modelling framework for composites containing 3D reinforcement. Compos. Struct. 94, 2895–2901 (2012)

    Article  Google Scholar 

  12. Green, S.D., Long, A.C., El Said, B.S.F., Hallett, S.R.: Numerical modelling of 3D woven preform deformations. Compos. Struct. 108, 747–756 (2014)

    Article  Google Scholar 

  13. John, S., Herszberg, I., Coman, F.: Longitudinal and transverse damage taxonomy in woven composite components. Compos. B 32, 659–668 (2001)

    Article  Google Scholar 

  14. El Hage, C., Younes, R., Aboura, Z., Benzeggagh, M.L., Zoaeter, M.: Analytical and numerical modeling of mechanical properties of orthogonal 3D CFRP. Compos. Sci. Technol. 69(1), 111–116 (2009)

    Article  Google Scholar 

  15. Lomov, S., Ivanov, D., Truong, T.C., Verpoest, I., Baudry, F., Vanden, K., Xie, H.: Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test. Compos. Sci. Technol. 68, 2340–2349 (2008)

    Article  Google Scholar 

  16. Couégnat, G., Martin, E., Lamon, J: 3D multiscale modeling of the mechanical behavior of woven composite materials. In: Proceedings of the Ceramic Engineering and Science, vol. 31, p. 185. American Ceramic Society, Inc., Westerville (2010)

  17. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. A 193, 281–297 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Stephen, W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)

    Article  Google Scholar 

  19. Hoffman, O.: The brittle strength of orthotropic materials. J. Compos. Mater. 1(2), 200–206 (1967)

    Article  ADS  Google Scholar 

  20. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7(4), 448–464 (1973)

    Article  ADS  Google Scholar 

  21. Sun, C.T.: Comparative Evaluation of Failure Analysis Methods for Composite Laminates. Technical report (1996)

  22. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998)

    Article  Google Scholar 

  23. Davila, C.G., Camanho, P.P., Rose, C.A.: Failure criteria for FRP laminates. J. Compos. Mater. 39(4), 323–345 (2005)

    Article  Google Scholar 

  24. Pinho, S.T., Dàvila, C.G., Camanho, P.P., Iannucci, L., Robinson, P.: Failure Models and Criteria for FRP Under in-Plane or Three-Dimensional Stress States Including Shear Non-linearity (2005)

  25. Ladevèze, P.: About a damage mechanics approach. In: Baptiste, D. (ed.) Mechanics and mechanisms of damage in composite and multimaterials, pp. 119–142. MEP, London (1989)

  26. Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: part I—constitutive model. Mech. Mater. 39(10), 897–908 (2007)

    Article  Google Scholar 

  27. Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: part II—computational implementation and validation. Mech. Mater. 39(10), 909–919 (2007)

    Article  Google Scholar 

  28. Gorbatikh, L., Ivanov, D., Lomov, S., Verpoest, I.: On modelling of damage evolution in textile composites on meso-level via property degradation approach. Compos. A: Appl. Sci. Manuf. 38(12), 2433–2442 (2007)

    Article  Google Scholar 

  29. Bahei-El-Din, Y.A., Rajendran, A.M., Zikry, M.A.: A micromechanical model for damage progression in woven composite systems. Int. J. Solids Struct. 41(9), 2307–2330 (2004)

    Article  MATH  Google Scholar 

  30. Greve, L., Pickett, A.K.: Modelling damage and failure in carbon/epoxy non-crimp fabric composites including effects of fabric pre-shear. Compos. A: Appl. Sci. Manuf. 37(11), 1983–2001 (2006)

    Article  Google Scholar 

  31. Cousigné, O., Moncayo, D., Coutellier, D., Camanho, P., Naceur, H., Hampel, S.: Development of a new nonlinear numerical material model for woven composite materials accounting for permanent deformation and damage. Compos. Struct. 106, 601–614 (2013)

    Article  Google Scholar 

  32. Martín-Santos, E., Maimí, P., González, E.V., Cruz, P.: A continuum constitutive model for the simulation of fabric-reinforced composites. Compos. Struct. 111, 122–129 (2014)

    Article  Google Scholar 

  33. Gao, F., Boniface, L., Ogin, S.L., Smith, P.A., Greaves, R.P.: Damage accumulation in woven-fabric CFRP laminates under tensile loading: part 1. Observations of damage accumulation. Compos. Sci. Technol. 59(1), 123–136 (1999)

    Article  Google Scholar 

  34. Trabelsi, W.: Approches multi-échelles d’expérimentation et de modélisation pour prédire la rupture d’un composite textile. Critère de classement des architectures tissées. PhD thesis, MinesParistech (2013)

  35. Thionnet, A., Trabelsi, W., Roirand, Q., Bunsell, A.R., Laiarinandrasana, L.: Modelling of failure of woven composites. Part 1: nomenclature defining the interzone concept. Appl. Compos. Mater. 23(4), 659–679 (2016)

    Article  ADS  Google Scholar 

  36. Laiarinandrasana, L., Trabelsi, W., Roirand, Q., Bunsell, A.R., Thionnet, A.: Modelling of failure of woven composites. Part 2: experimental and numerical justification of the interzone concept. Appl. Compos. Mater. 23(4), 681–705 (2016)

    Article  ADS  Google Scholar 

  37. Rosen, B.W.: Tensile failure of fibrous composites. AIAA J. 2(11), 1985–1991 (1964)

    Article  ADS  Google Scholar 

  38. Oh, K.P.: A monte carlo study of the strength of unidirectional fiber-reinforced composites. J. Compos. Mater. 13(4), 311–328 (1979)

    Article  ADS  Google Scholar 

  39. Baxevanakis, C., Jeulin, D., Valentin, D.: Fracture statistics of single-fibre composite specimens. Compos. Sci. Technol. 48(1), 47–56 (1993)

    Article  ADS  Google Scholar 

  40. Blassiau, S., Thionnet, A., Bunsell, A.R.: Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures. Part 1: micromechanisms and 3d analysis of load transfer: the elastic case. Compos. Struct. 74(3), 303–318 (2006)

    Article  Google Scholar 

  41. Blassiau, S., Thionnet, A., Bunsell, A.R.: Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures. Part 2: influence of viscoelastic and plastic matrices on the mechanisms of load transfer. Compos. Struct. 74(3), 319–331 (2006)

    Article  Google Scholar 

  42. Blassiau, S., Thionnet, A., Bunsell, A.R.: Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures: part 3. Multiscale reconstruction of composite behaviour. Compos. Struct. 83, 312–323 (2008)

    Article  Google Scholar 

  43. Piezel, B.: Comportement et analyse multi-échelles d’un compositre à renfort tissé tridimensionnel. PhD thesis, MinesParistech (2010)

  44. Marcellan, A., Bunsell, A.R., Piques, R., Colomban, P.: Micro-mechanisms, mechanical behaviour and probabilistic fracture analysis of pa 66 fibres. J. Mater. Sci. 38, 2117–2139 (2003)

    Article  ADS  Google Scholar 

  45. Marcellan, A., Bunsell, A.R., Laiarinandrasana, L., Piques, R.: A multi-scale analysis of the microstructure and the tensile mechanical behaviour of polyamide 66 fibre. Polymer 47(1), 367–378 (2006)

  46. Herrera Ramirez, J.M., Colomban, P., Bunsell, A.R.: Micro-Raman study of the fatigue fracture and tensile behaviour of polyamide (pa 66) fibres. J. Raman Spectrosc. 35, 1063–1072 (2004)

    Article  ADS  Google Scholar 

  47. Colomban, P., Herrera Ramirez, J.M., Paquin, M., Marcellan, A., Bunsell, A.R.: Micro-Raman study of the fatigue and fracture pa 66 fibres. Eng. Fract. Mech. 73, 2463–2475 (2006)

    Article  Google Scholar 

  48. Gorlier, E., Haudin, J.M., Billon, N.: Strain-induced crystallization in bulk amorphous pet under uniaxial loading. Polymer 42, 9541–9549 (2001)

    Article  Google Scholar 

  49. Dupaix, R.B., Boyce, M.C.: Finite strain behavior of poly(ethylene terephthalate) (pet) and poly(ethylene terephthalate)-glycol (petg). Polymer 46, 4827–4838 (2005)

    Article  Google Scholar 

  50. Besson, J., Foerch, R.: Large scale object-oriented finite element code design. Comp. Methods Appl. Mech. Eng. 142, 165–187 (1997)

    Article  ADS  MATH  Google Scholar 

  51. Besson, J., Cailletaud, G., Chaboche, J.L., Forest, S., Biétry, M.: Non-linear Mechanics of Materials. Springer, Berlin (2009)

    Google Scholar 

  52. Dirrenberger, J.: Effective Properties of Architectured Materials. PhD thesis, MinesParistech (2012)

  53. Piezel, B., Mercatoris, B.C.N., Trabelsi, W., Laiarinandrasana, L., Thionnet, A., Massart, T.J.: Bending effect on the risk for delamination at the reinforcement/matrix interface of 3d woven fabric composite using a shell-like rve. Compos. Struct. 94, 2343–2357 (2012)

    Article  Google Scholar 

  54. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 9, 293–296 (1951)

    MATH  Google Scholar 

  55. Sutcu, M.: Weibull statistics applied to fiber failure in ceramic composites and work of fracture. Acta Metall. 37, 651–661 (1989)

    Article  Google Scholar 

  56. Trustrum, K., Jayatilaka, A.D.E.S.: On estimating the weibull modulus for a brittle material. J. Mater. Sci. 14, 1080–1084 (1979)

    Article  ADS  Google Scholar 

  57. Meyers, M.A., Chawla, K.K.: Mechanical Behavior of Materials. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  58. Kalili, A., Kromp, K.: Statistical properties of weibull estimators. J. Mater. Sci. 26, 6741–6752 (1991)

    Article  ADS  Google Scholar 

  59. Le Clerc, C., Bunsell, A.R., Piant, A.: Influence of temperature on the mechanical behaviour of polyester fibres. J. Mater. Sci. 41(22), 7509–7523 (2006)

    Article  ADS  Google Scholar 

  60. Beyerlein, I.J., Phoenix, S.L.: Statistics of fracture for an elastic notched composite lamina containing weibull fibers—part 1. Features from monte-carlo simulation. Eng. Fract. Mech. 57, 241–265 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Roirand.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roirand, Q., Missoum-Benziane, D., Thionnet, A. et al. Finite element modelling of woven composite failure modes at the mesoscopic scale: deterministic versus stochastic approaches. Continuum Mech. Thermodyn. 29, 1081–1092 (2017). https://doi.org/10.1007/s00161-017-0553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0553-2

Keywords

Navigation