Skip to main content
Log in

Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference \(c_\mathrm{p} -c_\mathrm{v} \) is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moynihan, C.T., Eastell, A.E., Wilder, J., Tucker, J.: Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78, 2673–2677 (1974)

    Article  Google Scholar 

  2. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  3. Salzmann, E.J., Schweizer, K.S.: Transport coefficients in glassy colloidal fluids. J. Chem. Phys. (2003), 2001–2009

  4. Biroli, G., Garrahan, J.P.: Perspective: the glass transition. J. Chem. Phys. 138, 12A301 (2013)

    Article  Google Scholar 

  5. Rahman, M.S., Al-Marhubi, I.M., Al-Mahrougi, A.: Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: a comparison study. Chem. Phys. Lett. 440, 372–377 (2007)

    Article  ADS  Google Scholar 

  6. Backfolk, K., Holmes, R., Ihalainen, P., Sirvio, P., Triantafillopoulos, N.: Determination of the glass transition temperature of latex films: comparison of various methods. J. Peltonen Polym. Test. 26, 1031–1040 (2007)

    Article  Google Scholar 

  7. Tool, A.Q.: Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29, 240–253 (1946)

    Article  Google Scholar 

  8. Hodge, M., Berens, A.R.: Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules 15, 756–761 (1982)

    Article  ADS  Google Scholar 

  9. Gutzow, I.S., Schmelzer, J.W.P.: The Vitreous State. Springer, Berlin (2013)

    Book  Google Scholar 

  10. Lion, A., Peters, J., Kolmeder, S.: Simulation of temperature history-dependent phenomena of glass-forming materials based on thermodynamics with internal state variables. Thermochim. Acta 522, 182–193 (2011)

    Article  Google Scholar 

  11. Lion, A., Yagimli, B.: On the frequency-dependent specific heat and TMDSC: constitutive modelling based on thermodynamics with internal state variables. Thermochim. Acta 490, 64–74 (2009)

    Article  Google Scholar 

  12. Lion, A., Engelhardt, M., Johlitz, M.: Thermomechanical and calorimetric behaviours of supported glass-forming films: a study based on thermodynamics with internal variables. Thin Solid Films 522, 441–451 (2012)

    Article  ADS  Google Scholar 

  13. Xiao, R., Choi, J., Lakhera, N., Yakacki, C.M., Frick, C.P., Nguyen, T.D.: Modeling the glass transition of amorphous networks for shape-memory behavior. J. Mech. Phys. Solids 61, 1612–1635 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lion, A., Dippel, B., Liebl, C.: Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids. Struct 51, 729–739 (2014)

    Article  Google Scholar 

  15. Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  16. Altenbach, H.: Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  17. Atkins, P.W.: Physikalische Chemie. VCH Verlagsgesellschaft mbH, Weinheim (1988)

    Google Scholar 

  18. Chen, H.S., Wang, T.T.: Sub-sub Tg structural relaxation in glassy polymers. J. Appl. Phys. 52, 5898–5902 (1981)

    Article  ADS  Google Scholar 

  19. Wunderlich, B.: Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J. Chem. Phys. 64, 1052–1056 (1960)

    Article  Google Scholar 

  20. Wolpert, S.M., Weitz, A., Wunderlich, B.: Time-dependent heat capacity in the glass transition region. J. Polym. Sci. 9, 1887–1905 (1971)

    Google Scholar 

  21. Shi, P., Schach, R., Munch, E., Montes, H., Lequeux, F.: Glass transition distribution in miscible polymer blends: from calorimetry to rheology. Macromolecules 46, 3611–3620 (2013)

    Article  ADS  Google Scholar 

  22. Lion, A., Liebl, C., Kolmeder, S., Peters, J.: Representation of the glass-transition in mechanical and thermal properties of glass-forming materials: a three-dimensional theory based on thermodynamics with internal state variables. J. Mech. Phys. Solids 58, 1338–1360 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lion, A., Johlitz, M., Mittermeier, C.: Constitutive modelling of the glass transition and related phenomena: relaxation of shear stress under pressure. Adv. Methods Contin. Mech. Mater. Struct. 60, 103–118 (2016)

    MathSciNet  Google Scholar 

  24. Lion, A., Peters, J.: Coupling effects in dynamic calorimetry: frequency-dependent relations for specific heat and thermomechanical responses—a one-dimensional approach based on thermodynamics with internal state variables. Thermochim. Acta 500, 76–87 (2010)

    Article  Google Scholar 

  25. Richert, R.: Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys. Condens. Matter 14, R703–R738 (2002)

    Article  ADS  Google Scholar 

  26. Schmidt-Rohr, K., Spiess, H.W.: Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys. Rev. Lett. 66, 3020–3023 (1991)

    Article  ADS  Google Scholar 

  27. Tracht, U., Wilhelm, M., Heuer, A., Feng, F., Schmidt-Rohr, K., Spiess, H.W.: Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727–2729 (1998)

    Article  ADS  Google Scholar 

  28. Merabia, S., Sotta, P., Long, D.: Heterogeneous nature of the dynamics and glass transition in thin polymer films. Eur. Phys. J. E 15, 189–210 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lion.

Additional information

Communicated by Michael Johlitz, Lucien Laiarinandrasana, and Yann Marco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lion, A., Mittermeier, C. & Johlitz, M. Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid. Continuum Mech. Thermodyn. 29, 1061–1079 (2017). https://doi.org/10.1007/s00161-016-0551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0551-9

Keywords

Navigation