Skip to main content
Log in

Neglected transport equations: extended Rankine–Hugoniot conditions and J -integrals for fracture

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine–Hugoniot conditions for fracture are established along with extended forms of J -integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chorin, A., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics, 3rd edn, pp. 1–11. Springer, London. ISBN: 3540979182 (1993)

  2. Salencon, J.: Handbook of Continuum Mechanics: General Concepts Thermoelasticity (translated by Lyle S.), pp. 31–101. Springer, Berlin. ISBN: 3540414436 (2001)

  3. Griffith A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A 221, 163–198 (1921) doi:10.1098/rsta.1921.0006

    Article  ADS  Google Scholar 

  4. Griffith, A.A.: The theory of rupture. In: Proceedings of the 1st International Congress of Applied Mechanics. pp. 55–63. Delft (1924)

  5. Eftis J., Liebowitz H.: On surface energy and the continuum thermodynamics of brittle fracture. Eng. Fract. Mech. 8, 459–485 (1976) doi:10.1016/0013-7944(76)90002-3

    Article  Google Scholar 

  6. Gurtin M.E.: Thermodynamics and the Griffith criterion for brittle fracture. Int. J. Solids Struct. 15, 553–560 (1979) doi:10.1016/0020-7683(79)90082-9.

    Article  MathSciNet  MATH  Google Scholar 

  7. Seliger R.L., Whitham G.B.: Variational principles in continuum mechanics. Proc. R. Soc. Lond. A 305(1480), 1–25 (1968) doi:10.1098/rspa.1968.0103

    Article  ADS  MATH  Google Scholar 

  8. Gurtin M.E., Voorhees P.W.: The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. Lond. A 440(1909), 323–343 (1993) doi:10.1098/rspa.1993.0019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Smyshlyaev V.P., Willis J.R.: On the relation of a three-well energy. Proc. R. Soc. Lond. A 445(1983), 779–814 (1999) doi:10.1098/rspa.1999.0335

    Article  MathSciNet  MATH  Google Scholar 

  10. Scholle M.: Construction of Lagrangians in continuum theories. Proc. R. Soc. Lond. A 460(2051), 3241–3260 (2004) doi:10.1098/rspa.2004.1354

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Sandhu R.S., Pister K.S.: Variational principles for boundary value and initial boundary value problems in continuum mechanics. Int. J. Solids Struct. 7(7), 639–654 (1971) doi:10.1016/0020-7683(71)90085-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Santaoja K.: Basics of Griffith’s fracture mechanics. Rakenteiden Mekaniikka 25(3), 3–23 (1992)

    Google Scholar 

  13. Guź A.N.: Identification of Lagrangian and Eulerian coordinates in continuum mechanics. Int. Appl. Mech. 34(10), 965–968 (1998) doi:10.1007/BF02701051

    Article  ADS  MATH  Google Scholar 

  14. Tan C.L., Fenner R.T.: Elastic fracture mechanics analysis by the boundary integral equation method. Proc. R. Soc. Lond. A 369(1737), 243–260 (1979) doi:10.1098/rspa.1979.0162

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Vitali E., Benson D.J.: Modeling localized failure with arbitrary Lagrangian Eulerian methods. Comput. Mech. 49(2), 197–212 (2012) doi:10.1007/s00466-011-0632-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Mariano P.M.: Influence of the material substructure on crack propogation: a unified treatment. Proc. R. Soc. Lond. A 461(2054), 371–395 (2005) doi:10.1098/rspa.2004.1392

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ma L., Korusunsky A.M.: Vector J-integral analysis of crack initiation at the edge of complete sliding contact. Proc. R. Soc. Lond. A 462(2070), 1805–1820 (2006) doi:10.1098/rspa.2005.1650

    Article  ADS  MATH  Google Scholar 

  18. Salas M.D.: The curious events leading to the theory of shock waves. Shock Waves 16(6), 477–487 (2007) doi:10.1007/s00193-007-0084-z

    Article  ADS  MATH  Google Scholar 

  19. Truesdell C., Noll W.: The Non-linear Field Theories of Mechanics, pp. 66–77. Springer, Berlin (2013)

    MATH  Google Scholar 

  20. Von Westenholz, C.: Differential Forms in Mathematical Physics, pp. 208–223. Elsevier, Amsterdam. ISBN: 0720405378 (1978)

  21. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures, pp. 1–479. Wiley, Hoboken. ISBN: 0471973939 (1998)

  22. Davey K., Mondragon R.: A non-physical enthalpy method for the numerical solution of isothermal solidification. Int. J. Numer. Methods Eng. 84(2), 214–252 (2010) doi:10.1002/nme.2896

    MathSciNet  MATH  Google Scholar 

  23. Needleman A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech 54, 525–531 (1987) doi:10.1115/1.3173064

    Article  ADS  MATH  Google Scholar 

  24. Needleman A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38(3), 289–324 (1990) doi:10.1016/0022-5096(90)90001-K

    Article  ADS  Google Scholar 

  25. Chaboche J., Girard R., Levasseaur P.: On the interface debonding models. Int. J. Damage Mech. 6(3), 220–257 (1997) doi:10.1177/105678959700600302

    Article  Google Scholar 

  26. Ortiz M., Pandolfi A.: Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng 44(9), 1267–1282 (1999) doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7

    Article  MATH  Google Scholar 

  27. Pandolfi A., Guduru P.R., Oritz M., Rosakis A.J.: Three dimensional cohesive element analysis and experiments of dynamic fracture in C300 steel. Int. J. Solids Struct 37(27), 3733–3760 (2000) doi:10.1016/S0020-7683(99)00155-9

    Article  Google Scholar 

  28. Tvergaard V.: Crack growth predictions by cohesive zone model for ductile fracture. J. Mech. Phys. Solids 49(9), 2191–2207 (2001) doi:10.1016/S0022-5096(01)00030-8

    Article  ADS  MATH  Google Scholar 

  29. Nguyen O., Repetto E.A., Ortiz M., Radovitzky R.A.: A cohesive model of fatigue crack growth. Int. J. Fract 110(4), 351–369 (2001) doi:10.1023/A:1010839522926

    Article  Google Scholar 

  30. Roe K.L., Siegmund T.: An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70(2), 209–232 (2003) doi:10.1016/S0013-7944(02)00034-6

    Article  Google Scholar 

  31. Rice J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech 35, 379–386 (1968) doi:10.1115/1.3601206

    Article  ADS  Google Scholar 

  32. Rice J.R., Drucker D.C.: Energy changes in stressed bodies due to void and crack growth. Int. J. Fract. Mech. 3, 19–27 (1967)

    Google Scholar 

  33. Truesdell C.: The Elements of Continuum Mechanics, pp. 9–17. Springer, Berlin (2012)

    Google Scholar 

  34. ANSYS@Academic Research, Release 16.1, Help System, Mechanical Applications/APDL, Ansys, Inc

  35. Shen L.-J.: On the decomposition of deformation into elastic–plastic parts. J. Appl. Mech. 65, 1059–1061 (1998) doi:10.1115/1.2791901

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Davey.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davey, K., Darvizeh, R. Neglected transport equations: extended Rankine–Hugoniot conditions and J -integrals for fracture. Continuum Mech. Thermodyn. 28, 1525–1552 (2016). https://doi.org/10.1007/s00161-016-0493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0493-2

Keywords

Navigation