Skip to main content
Log in

Constitutive model for flake graphite cast iron automotive brake discs: from macroscopic multiscale models to a 1D rheological description

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

One of the critical points of the thermomechanical fatigue design process is the correct description of the cyclic behavior of the material. This work focuses on the material of automotive brake discs, namely flake graphite cast iron. The specificity of this material is its asymmetric behavior under tensile and compressive loadings, which is due to the shape of graphite that acts as small cracks. Multiscale models inspired from the literature are first presented. They lead to a good description of the material behavior under cyclic loadings. An elastoviscoplastic constitutive model is then proposed in a one-dimensional setting in order to accurately describe cyclic tests from room temperature up to \({600^{\circ}{C}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. AFNOR: Fonderie - fonte à graphite lamellaire. Norme NF EN 1561 (1997)

  2. Altenbach H., Stoychev G.B., Tushtev K.N.: On elastoplastic deformation of grey cast iron. Int. J. Plast. 17, 719–736 (2001)

    Article  MATH  Google Scholar 

  3. Aravas N., Kim K.S., Leckie F.A.: On the calculations of the stored energy of cold works. J. Eng. Mater. Tech. 112, 465–470 (1990)

    Article  Google Scholar 

  4. Armstrong, P., Frederick, C.: A mathematical representation of the multiaxial Bauschinger effect. Technical report RD/B/N 731, Central Electricity Generating Board (1966)

  5. Augustins, L., Billardon, R., Hild, F.: A constitutive model for flake graphite cast iron automotive brake disks. Induced anisotropic damage model under complex loadings. Continuum Mech. Therm. Submitted article

  6. Benallal A., Billardon R., Lemaitre J.: Continuum damage mechanics and local approach to fracture: Numerical procedures. Comput. Methods Appl. Mech. Eng. 92, 141–155 (1991)

    Article  ADS  MATH  Google Scholar 

  7. Besson, J.: Implementation of material constitutive equations in finite element codes. http://mms2.ensmp.fr/msi_paris/nlfe/transparents/paris_tech2005b.pdf. Accessed 30 Sept 2013

  8. Brooks P.C., Barton D.C., Koetniyom S.: The development of a material model for cast iron that can be used for brake system analysis. Proc. Inst. Mech. Eng. Part D J. Automot. Eng. 216(5), 349–362 (2002)

    Article  Google Scholar 

  9. Chaboche, J.L.: Description phénoménologique de la viscoplasticité cyclique avec endommagement. Thèse d’Etat, Université Pierre et Marie Curie, Paris 6 (1978)

  10. Chaboche J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989)

    Article  MATH  Google Scholar 

  11. Clough W.R., Shank H.E.: The deformation and rupture of grey cast iron. Trans. ASM 49, 241–262 (1957)

    Google Scholar 

  12. Constantinescu A., Charkaluk E., Lederer G., Verger L.: A computational approach to thermomechanical fatigue. Int. J. Fatigue 26, 805–818 (2004)

    Article  Google Scholar 

  13. Downing S.D., Socie D.F.: Stress/strain simulation model for grey cast iron. Int. J. Fatigue 142, 143–148 (1982)

    Article  Google Scholar 

  14. Drucker D., Prager W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math 10, 157–165 (1952)

    MathSciNet  MATH  Google Scholar 

  15. Germain, P.: Cours de mécanique des milieux continus. Amsterdam, Paris (1973)

  16. Gilbert G.N.J.: An evaluation of the stress–strain properties of flake graphite cast iron in tension and compression. Br. Cast Iron Res. Assoc. J. 7, 745–789 (1959)

    Google Scholar 

  17. Haenny L., Zambelli G.: The role of the matrix graphite interaction in the tensile behavior of grey cast iron. Eng. Fract. Mech. 19, 113–121 (1984)

    Article  Google Scholar 

  18. Halphen B., Nguyen Q.S.: Sur les matériaux standards généralisés. Journal de mécanique 14, 39–63 (1975)

    MATH  Google Scholar 

  19. Hjelm H.E.: Yield surface for grey cast iron under biaxial stress. Trans. Am. Soc. Mech. Eng. 116, 148–154 (1994)

    Google Scholar 

  20. Josefson B.L., Stigh U., Hjelm H.E.: A non linear kinematic hardening model for elastoplastic deformations in grey cast iron. J. Eng. Mater. Technol. 117, 145–150 (1995)

    Article  Google Scholar 

  21. Kachanov L.M.: Time of the rupture process under creep conditions. Izv. Akad.Nauk. SSR. Otd Tekh. Nauk. 8, 26–31 (1958)

    Google Scholar 

  22. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  23. Lemaitre J., Desmorat R.: Engineering Damage Mechanics. Springer, New York (2005)

    Google Scholar 

  24. Marquardt D.: An algorithm for least-squares estimation of nonlinear parameters. J. Appl. Math. 11, 431–441 (1963)

    MathSciNet  MATH  Google Scholar 

  25. Meyersberg H.: Sur la signification du module d’élasticité de la fonte. La Fonte 14, 522 (1934)

    Google Scholar 

  26. Mohr, O.: Welche Umstaende bedingen die Elastizitaetsgrenze und den Bruch eines Materials. Zeitschrift des Vereins Deutscher Ingenieure pp. 44–1524 (1900)

  27. Ortiz M., Popov E.P.: Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int. J. Numer. Methods Eng. 21, 1561–1576 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Prager W.: A new method of analyzing stress and strains in work hardening plastic solids. J. Appl. Mech. 23, 493–496 (1956)

    MathSciNet  MATH  Google Scholar 

  29. Raghava R., Caddell R.M., Yeh G.S.Y.: The macroscopic yield behavior of polymers. J. Mat. Sci. 8, 225–232 (1973)

    Article  ADS  Google Scholar 

  30. Russell, E.: Finite element simulation of the microstructure of gray cast iron. Fracture Control Program Report No. 33, College of Engineering, University of Illinois (1979)

  31. Simulia: Abaqus/standard output variable identifiers (section 4.2.1). Abaqus 6.10 Analysis User’s Manual (2010)

  32. Z-Set: Non-linear material and structure analysis suite. http://www.zset-software.com/. Accessed 27 July 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Augustins.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustins, L., Billardon, R. & Hild, F. Constitutive model for flake graphite cast iron automotive brake discs: from macroscopic multiscale models to a 1D rheological description. Continuum Mech. Thermodyn. 28, 1009–1025 (2016). https://doi.org/10.1007/s00161-015-0448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0448-z

Keywords

Navigation