Skip to main content
Log in

General quantitative analysis of stress partitioning and boundary conditions in undrained biphasic porous media via a purely macroscopic and purely variational approach

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In poroelasticity, the effective stress law relates the external stress applied to the medium to the macroscopic strain of the solid phase and the interstitial pressure of the fluid saturating the mixture. Such relationship has been formerly introduced by Terzaghi in form of a principle. To date, no poroelastic theory is capable of recovering a stress partitioning law in agreement with Terzaghi’s postulated one in the absence of ad hoc constitutive assumptions on the medium. We recently proposed a variational macroscopic continuum description of two-phase poroelasticity to derive a general biphasic formulation at finite deformations, termed variational macroscopic theory of porous media (VMTPM). Such approach proceeds from the inclusion of the intrinsic volumetric strain among the kinematic descriptors aside to macroscopic displacements, and as a variational theory, uses the Hamilton least-action principle as the unique primitive concept of mechanics invoked to derive momentum balance equations. In a previous related work it was shown that, for the subclass of undrained problems, VMTPM predicts that stress is partitioned in the two phases in strict compliance with Terzaghi’s law, irrespective of the microstructural and constitutive features of a given medium. In the present contribution, we further develop the linearized framework of VMTPM to arrive at a general operative formula that allows the quantitative determination of stress partitioning in a jacketed test over a generic isotropic biphasic specimen. This formula is quantitative and general, in that it relates the partial phase stresses to the externally applied stress as function of partitioning coefficients that are all derived by strictly following a purely variational and purely macroscopic approach, and in the absence of any specific hypothesis on the microstructural or constitutive features of a given medium. To achieve this result, the stiffness coefficients of the theory are derived by using exclusively variational arguments. We derive the boundary conditions attained across the boundary of a poroelastic saturated medium in contact with an impermeable surface also based on purely variational arguments. A technique to retrieve bounds for the resulting elastic moduli, based on Hashin’s composite spheres assemblage method, is also reported. Notably, in spite of the minimal mechanical hypotheses introduced, a rich mechanical behavior is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fillunger P.: Versuche über die zugfestigkeit bei allseitigem wasserdruck. Osterr. Wochenschr. Offentl. Baudienst 29, 443–448 (1915)

    Google Scholar 

  2. Terzaghi, K.: The shearing resistance of saturated soils and the angle between the planes of shear. In: International Conference on Soil Mechanics and Foundation Engineering. Cambridge, MA, USA (1936)

  3. de Boer R., Ehlers W.: The development of the concept of effective stresses. Acta Mech. 83(1–2), 77–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Skempton, A.W.: Terzaghi’s discovery of effective stress. In: From Theory to Practice in Soil Mechanics: Selections from the Writings of Karl Terzaghi, pp. 42–53. Wiley, New York (1960)

  5. Nuth M., Laloui L.: Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int. J. Numer. Anal. Methods Geomech. 32(7), 771–801 (2008)

    Article  MATH  Google Scholar 

  6. Jardine, R.J., Gens, A., Hight, D.W., Coop, M.R.: Developments in understanding soil behaviour. In Advances in Geotechnical Engineering: The Skempton Conference. Thomas Telford, p. 103 (2004)

  7. Serpieri R., Travascio F., Asfour S., Rosati L.: Variationally consistent derivation of the stress partitioning law in saturated porous media. Int. J. Solids Struct 56(57), 235–247 (2015)

    Article  Google Scholar 

  8. Berdichevsky, V.L.: Variational Principles of Continuum Mechanics. Springer, p. 1 (2009). doi:10.1007/978-3-540-8867-5

  9. Landau, L.D., Lifshitz, E.M.: Mechanics: Volume 1 (course of theoretical physics) (1976). doi:10.1002/zamm.19610410910

  10. Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics á la hamilton–piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 28, 1–44 (2013). doi:10.1177/1081286513497616

  11. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids (2014). doi:10.1177/1081286513509811

  12. dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  14. Eremeyev V.A., Pietraszkiewicz W.: The nonlinear theory of elastic shells with phase transitions. J.Elast. 74(1), 67–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pietraszkiewicz W., Eremeyev V., Konopińska V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM J. Appl. Math. Mech. 87(2), 150–159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bedford A., Drumheller D.S.: A variational theory of porous media. Int. J. Solids Struct. 15(12), 967–980 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gavrilyuk S.L., Gouin H., Perepechko Y.V.: Hyperbolic models of homogeneous two-fluid mixtures. Meccanica 33(2), 161–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gouin H., Ruggeri T.: Hamiltonian principle in binary mixtures of euler fluids with applications to the second sound phenomena. Rendiconti Matematici dell’Accademia dei Lincei 14(9), 69–83 (2003)

    MathSciNet  MATH  Google Scholar 

  20. dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. a second-gradient theory extending terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    Article  ADS  MATH  Google Scholar 

  21. Sciarra G., dell’Isola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  22. Lopatnikov S.L., Cheng A.H.: Macroscopic lagrangian formulation of poroelasticity with porosity dynamics. J. Mech. Phys. Solids 52(12), 2801–2839 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Lopatnikov S.L., Gillespie W.: Poroelasticity-I: governing equations of the mechanics of fluid-saturated porous materials. Transp. Porous Media 84(2), 471–492 (2010)

    Article  MathSciNet  Google Scholar 

  24. Placidi L., Dell’Isola F., Ianiro N., Sciarra G.: Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids 27(4), 582–606 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Sciarra G., dell’Isola F., Hutter K.: A solid–fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Thermodyn. 13(5), 287–306 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Madeo A., dell’Isola F., Ianiro N., Sciarra G.: A variational deduction of second gradient poroelasticity II: an application to the consolidation problem. J. Mech. Mater. Struct. 3(4), 607–625 (2008)

    Article  Google Scholar 

  27. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid–permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Serpieri R.: A rational procedure for the experimental evaluation of the elastic coefficients in a linearized formulation of biphasic media with compressible constituents. Transp. Porous Media 90(2), 479–508 (2011)

    Article  MathSciNet  Google Scholar 

  29. Serpieri R., Rosati L.: Formulation of a finite deformation model for the dynamic response of open cell biphasic media. J. Mech. Phys. Solids 59(4), 841–862 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Serpieri, R., Travascio, F., Asfour, S.: Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases. In: Computational Methods for Coupled Problems in Science and Engineering V—A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013, pp. 1142–1153 (2013)

  31. Travascio, F., Serpieri, R., Asfour, S.: Articular cartilage biomechanics modeled via an intrinsically compressible biphasic model: implications and deviations from an incompressible biphasic approach. In: ASME 2013 Summer Bioengineering Conference, SBC 2013, 1 B, (2013)

  32. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  33. Hashin Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech. 29(1), 143–150 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Hashin Z.: Analysis of composite materials—a survey. J. Appl. Mech. 50(3), 481–505 (1983)

    Article  ADS  MATH  Google Scholar 

  35. Lee K.J., Westmann R.A.: Elastic properties of hollow-sphere-reinforced composites. J. Compos. Mater. 4(2), 242–252 (1970)

    Article  ADS  Google Scholar 

  36. Marsden J.E., Hughes T.: Mathematical foundations of elasticity. Courier Dover Publications, Mineola (1994)

    MATH  Google Scholar 

  37. Skempton A.W.: The pore-pressure coefficients a and b. Geotechnique 4(4), 143–147 (1954)

    Article  Google Scholar 

  38. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  39. Hou J.S., Holmes M.H., Lai W.M., Mow V.C.: Boundary conditions at the cartilage–synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Eng. 111(1), 78–87 (1989)

    Article  Google Scholar 

  40. Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980)

    Article  Google Scholar 

  41. Travascio, F., Serpieri, R., Asfour, S.: Articular cartilage biomechanics modeled via an intrinsically compressible biphasic model: implications and deviations from an incompressible biphasic approach. In: ASME 2013 Summer Bioengineering Conference, pp V01BT55A004–V01BT55A004. American Society of Mechanical Engineers (2013)

  42. Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cazzani A., Ruge P.: Numerical aspects of coupling strongly frequency-dependent soil–foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng. 37, 56–72 (2012)

    Article  Google Scholar 

  44. Cuomo M., Contrafatto L., Greco L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  45. Markert B.: A constitutive approach to 3-D nonlinear fluid flow through finite deformable porous continua. Transp. Porous Media 70(3), 427–450 (2007)

    Article  MathSciNet  Google Scholar 

  46. Timoshenko S.P., Goodier J.N., Abramson H.N.: Theory of elasticity. J. Appl. Mech. 37, 888 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Serpieri.

Additional information

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell'Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serpieri, R., Travascio, F. General quantitative analysis of stress partitioning and boundary conditions in undrained biphasic porous media via a purely macroscopic and purely variational approach. Continuum Mech. Thermodyn. 28, 235–261 (2016). https://doi.org/10.1007/s00161-015-0421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0421-x

Keywords

Navigation