Skip to main content
Log in

On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: numerical algorithm

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This is part II of this series of papers. The aim of the current paper was to solve the governing PDE system derived in part I numerically, such that the procedure of variant reorientation in a magnetic shape memory alloy (MSMA) sample can be simulated. The sample to be considered in this paper has a 3D cuboid shape and is subject to typical magnetic and mechanical loading conditions. To investigate the demagnetization effect on the sample’s response, the surrounding space of the sample is taken into account. By considering the different properties of the independent variables, an iterative numerical algorithm is proposed to solve the governing system. The related mathematical formulas and some techniques facilitating the numerical calculations are introduced. Based on the results of numerical simulations, the distributions of some important physical quantities (e.g., magnetization, demagnetization field, and mechanical stress) in the sample can be determined. Furthermore, the properties of configurational force on the twin interfaces are investigated. By virtue of the twin interface movement criteria derived in part I, the whole procedure of magnetic field- or stress-induced variant reorientations in the MSMA sample can be properly simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang J., Steinmann P.: On the modelling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. I: theoretical formulation. Contin. Mech. Thermodyn. 26, 563–592 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. Webster P.J., Ziebeck K.R.A., Town S.L., Peak M.S.: Magnetic order and phase transformation in Ni \rm 2MnGa. Philos. Mag. B 49, 295–310 (1984)

    Article  ADS  Google Scholar 

  3. Ullakko K., Huang J.K., Kantner C., O’Handley R.C., Kokorin V.V.: Large magnetic-field-induced strains in Ni 2MnGa single crystals. Appl. Phys. Lett. 69, 1966–1968 (1996)

    Article  ADS  Google Scholar 

  4. Murrey S.J., Marioni M., Allen S.M., O’Handley R.C., Lograsso T.A.: 6 % magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 77, 886–888 (2000)

    Article  ADS  Google Scholar 

  5. Tickle R., James R.D.: Magnetic and magnetomechanical properties of Ni 2MnGa. J. Magn. Magn. Mater. 195, 627–638 (1999)

    Article  ADS  Google Scholar 

  6. Müllner P., Chernenko V.A., Kostorz G.: Stress-induced twin rearrangement resulting in change of magnetization in a Ni–Mn–Ga ferromagnetic martensite. Scr. Mater. 49, 129–133 (2003)

    Article  Google Scholar 

  7. Chernenko V.A., L’vov V.A., Müllner P., Kostorz G., Takagi T.: Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: experiment and modeling. Phys. Rev. B 69, 134410 (2004)

    Article  ADS  Google Scholar 

  8. Karaca H.E., Karaman I., Basaran B., Chumlyakov Y.I., Maier H.J.: Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 54, 233–245 (2006)

    Article  Google Scholar 

  9. Straka, L.: Magnetic and magneto-mechanical properties of Ni–Mn–Ga magnetic shape memory alloys. Doctoral Dissertation, Helsinki University of Technology (2007)

  10. Ge Y., Heczko O., Söderberg O., Hannula S.P.: Direct optical observation of magnetic domains in Ni–Mn–Ga martensite. Appl. Phys. Lett. 89, 082502 (2006)

    Article  ADS  Google Scholar 

  11. Scheerbaum N., Lai Y.W., Leisegang T., Thomas M., Liu J., Khlopkov K., McCord J., Fähler S., Träger R., Meyer D.C., Schultz L., Gutfleisch O.: Constraint-dependent twin variant distribution in Ni 2MnGa single crystal, polycrystals and thin film: an EBSD study. Acta Mater. 58, 4629–4638 (2010)

    Article  Google Scholar 

  12. Lai Y.W., Scheerbaum N., Hinz D., Gutfleisch O., Schäfer R., Schultz L., McCord J.: Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys. Appl. Phys. Lett. 90, 192504 (2007)

    Article  ADS  Google Scholar 

  13. Lai, Y.W.: Magnetic microstructure and actuation dynamics of NiMnGa magnetic shape memory materials. Ph.D. thesis, Technical University of Dresden (2009)

  14. Tickle R., James R.D., Shield T., Wuttig M., Kokorin V.V.: Ferromagnetic shape memory in the NiMnGa system. IEEE Trans. Magn. 35, 4301–4310 (1999)

    Article  ADS  Google Scholar 

  15. Shield T.W.: Magnetomechanical testing machine for ferromagnetic shape-memory alloys. Rev. Sci. Instrum. 74, 4077–4088 (2003)

    Article  ADS  Google Scholar 

  16. Aharoni A.: Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 (1998)

    Article  ADS  Google Scholar 

  17. Kiefer, B., Lagoudas, D.: Application of a magnetic SMA constitutive model in the analysis of magnetomechanical boundary value problems. In: Proceedings of SPIE, Smart Structures and Materials: Active Materials: Behavior and Mechanics, San Diego, CA, 26 February-2 March (2006), 6170, 330–341 (2006)

  18. Wang J., Steinmann P.: A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys. J. Mech. Phys. Solids 60, 1179–1200 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kiefer, B., Lagoudas, D.C.: Magnetic fieldinduced martensitic variant reorientation in magnetic shape memory alloys. Philosophical Magazine Special Issue: Recent Advances in Theoretical Mechanics, in Honor of SES 2003 A.C. Eringen Medalist G.A. Maugin, 85(33–35), 4289–4329 (2005)

  20. Haldar K., Kiefer B., Lagoudas D.C.: Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples. Philos. Magaz. 91, 4126–4157 (2011)

    Article  ADS  Google Scholar 

  21. Kiang J., Tong L.: Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater. Struct. 19, 015017 (2010)

    Article  ADS  Google Scholar 

  22. Wang J., Steinmann P.: Finite element simulation of the magneto-mechanical response of a magnetic shape memory alloy sample. Philos. Mag. 93, 2630–2653 (2013)

    Article  ADS  Google Scholar 

  23. Chen X., Moumni Z., He Y.J., Zhang W.H.: A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J. Mech. Phys. Solids 64, 249–286 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  24. Abeyaratne R.: An admissibility condition for equilibrium shocks in finite elasticity. J. Elast. 13, 175–184 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eshelby J.D.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. James R.D.: Configurational forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever. Contin. Mech. Thermodyn. 14, 55–86 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Chen Q., Konrad A.: A review of finite element open boundary techniques for static and quasi-static electromagnetic field problems. IEEE Trans. Mag. 33, 663–676 (1997)

    Article  ADS  Google Scholar 

  28. Toupin R.A.: The elastic dieletric. J. Ration. Mech. Anal. 5, 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  29. Wu P.P., Ma X.Q., Zhang J.X., Chen L.Q.: Phase-field simulations of stress-strain behaviour in ferromagnetic shape memory alloy NiMnGa. J. App. Phys. 104, 073906 (2008)

    Article  ADS  Google Scholar 

  30. Suorsa, I.: Performance and modeling of magnetic shape memory actuators and sensors, Doctoral Dissertation, Helsinki University of Technology (2005)

  31. Straka L., Hänninen H., Soroka A., Sozinov A.: Ni–Mn–Ga single crystals with very low twinning stress. J. Phys. Conf. Ser. 303, 012079 (2011)

    Article  ADS  Google Scholar 

  32. Jin Y.M.: Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation. Appl. Phys. Lett. 94, 062508 (2009)

    Article  ADS  Google Scholar 

  33. Li L.J., Lei C.H., Shu Y.C., Li J.Y.: Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta. Mater. 59, 2648–2655 (2011)

    Article  ADS  Google Scholar 

  34. Mennerich C., Wendler F., Jainta M., Nestler B.: A phase-field model for the magnetic shape memory effect. Arch. Mech. 63, 549–571 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Wang.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Steinmann, P. On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: numerical algorithm. Continuum Mech. Thermodyn. 28, 669–698 (2016). https://doi.org/10.1007/s00161-014-0403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0403-4

Keywords

Navigation