Skip to main content
Log in

The legacy of Venus Express: highlights from the first European planetary mission to Venus

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

The ESA/Venus Express mission spent more than 8 years in orbit around Venus to extensively study its atmosphere, ionosphere and plasma environment and unveil new aspects of its surface. Extensive reviews of the work of Venus Express are underway, to cover in-depth studies of the new face of Venus revealed by Venus Express and ground-based concurrent observations. This paper intends to give a summarized and wide overview of some of the outstanding results in all the science areas studied by the mission. This paper will first review the main aspects of the mission and its instrumental payload. Then, a selection of results will be reviewed from the outermost layers interacting with the Solar wind, down to the surface of Venus. As Venus Express is already considered by space agencies as a pathfinder for the future of Venus exploration, perspectives for future missions will be given, which will have to study Venus not only from orbital view, but also down to the surface to solve the many remaining mysteries of the sister planet of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen DA, Crawford JW (1984) Cloud structure on the dark side of Venus. Nature. doi:10.1038/307222a0

  • Barabash S et al (2007a) The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express Mission. Planetary and Space Science. doi:10.1016/j.pss.2007.01.014

  • Barabash S et al (2007b) The loss of ions from Venus through the plasma wake. Nature. doi:10.1038/nature06434

  • Barstow JK et al (2012) Models of the global cloud structure on Venus derived from Venus Express observations. Icarus 217:542

    Article  ADS  Google Scholar 

  • Barth CA et al (1967) Ultraviolet emissions observed near Venus from Mariner V. Science 158:1675–1678

    Article  ADS  Google Scholar 

  • Belyaev D et al (2008) First observations of \(\text{ SO }_{2}\) above Venus’ clouds by means of solar occultation in the infrared. J Geophys Res 113. doi:10.1029/2008JE003143

  • Belyaev D et al (2012) Vertical profiling of SO2 and SO above Venus’ clouds by SPICAV/SOIR solar occultations. Icarus 217:740–751

    Article  ADS  Google Scholar 

  • Bertaux JL et al (2007) SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet Space Sci 55:1673–1700. doi:10.1016/j.pss.2007.01.016

    Article  ADS  Google Scholar 

  • Bézard B, de Bergh C, Crisp D, Maillard JP (1990) The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345:508–511

    Article  ADS  Google Scholar 

  • Bézard B, Tsang C, Carlson RW, Piccioni G, Marcq, E, Drossart P (2009) Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. J Geophys Res 114:0B39

  • Bézard B, Fedorova A, Bertaux JL, Rodin AV, Korablev O (2011) The 1.10- and 1.18-\(\upmu \text{ m }\) nightside windows of Venus observed by SPICAV-IR aboard Venus Express. Icarus 216:173

    Article  ADS  Google Scholar 

  • Bullock MA, Grinspoon DH (1996) The stability of climate on Venus. J Geophys Res 101:7521

    Article  ADS  Google Scholar 

  • Carlson RW et al (1991) Galileo infrared imaging spectroscopy measurements at Venus. Science 253:1541–1548

    Article  ADS  Google Scholar 

  • Collinson GA et al (2012a) Short large-amplitude magnetic structures (SLAMS) at Venus. J Geophys Res A 117:10221C

  • Collinson GA et al (2012b) Hot flow anomalies at Venus. J Geophys Res A 117:4204

  • Connes P, Noxon JF, Traub WA, Carleton NP (1979) \(\text{ O }_{2}\) emission in the day and night airglow of Venus. Astrophys J Part 2 Lett Ed 233:L29–L32

  • Cottini V et al (2012) Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus 217:561–569

    Article  ADS  Google Scholar 

  • Delva M, Zhang TL, Volwerk M, Vörös Z, Pope SA (2008a) Proton cyclotron waves in the solar wind at Venus J Geophys Res E113:E00B06. doi:10.1029/2008JE003148

  • Delva M, Zhang TL, Volwerk M, Russell CT, Wei HY (2008b) Upstream proton cyclotron waves at Venus. Planet Space Sci 56:1293

    Article  ADS  Google Scholar 

  • Delva M, Bertucci C, Volwerk M, Lundin R, Mazelle C, Romanelli N (2015) Upstream proton cyclotron waves at Venus near solar maximum. J Geophys Res A 120:344

    Article  ADS  Google Scholar 

  • Drossart P et al (2007a) Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planet Space Sci 55:1653-167. doi:10.1016/j.pss.2007.01.003

  • Drossart P et al (2007b) A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature 450:641–645. doi:10.1038/nature06140

    Article  ADS  Google Scholar 

  • Dubinin EM et al (2012) Bursty escape fluxes in plasma sheets of Mars and Venus. Geophys Res Lett 39. doi:10.1029/2011GL049883

  • Edberg NJT et al (2011) Atmospheric erosion of Venus during stormy space weather. J Geophys Res 116:A09308. doi:10.1029/2011JA016749

    ADS  Google Scholar 

  • Encrenaz P et al (2012) HDO and \(\text{ SO }_{2}\) variability. Astron Astrophys 543. doi:10.1051/0004-6361/201219419

  • Encrenaz T, Moreno R, Moullet A, Lellouch E, Fouchet T (2015) Submillimeter mapping of mesospheric minor species on Venus with ALMA. Planet Space Sci 113:275

    Article  ADS  Google Scholar 

  • Fedorov A et al (2011) Measurements of the ion escape rates from Venus for solar minimum. J Geophys Res 116:A07220. doi:10.1029/2011JA016427

    ADS  Google Scholar 

  • Feldman PD, Moos HW, Clarke JT, Lane AL (1979) Identification of the UV nightglow from Venus. Nature 279:221

    Article  ADS  Google Scholar 

  • Fegley B Jr et al (1997) Geochemistry of surface–atmosphere interactions on Venus. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II. The University of Arizona Press, Tucson, pp 591–636

    Google Scholar 

  • Formisano V et al (2006) The planetary Fourier spectrometer (PFS) onboard the European Venus Express mission. Planet Space Sci 54:1298–1314. doi:10.1016/j.pss.2006.04.033

    Article  ADS  Google Scholar 

  • Galli A et al. (2008) Tailward flow of energetic neutral atoms observed at Venus. J Geophys Res 113:E00B15. doi:10.1029/2008JE003096

  • Garate-Lopez I, García Muñoz A, Hueso R, Sánchez-Lavega A (2015) Instantaneous three-dimensional thermal structure of the South Polar Vortex of Venus. Icarus 245:16

    Article  ADS  Google Scholar 

  • Garcia RF, Drossart P, Piccioni G, López-Valverde M, Occhipinti G (2009) Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions. J Geophys Res E 114:0B32

  • Garcia-Munoz A, Mills FM, Piccioni G, Drossart P (2009) The near-infrared nitric oxide nightglow in the upper atmosphere of Venus. Proc Natl Acad Sci 106(4):985–988. doi:10.1073/pnas.0808091106

    Article  ADS  Google Scholar 

  • Gérard JC, Cox C, Saglam A, Bertaux JL, Villard E, Nehmé C (2008) Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express. J Geophys Res 113:E00B03. doi:10.1029/2008JE003078

  • Gérard JC et al (2009) Concurrent observations of the ultraviolet nitric oxide and infrared O2 nightglow emissions with Venus Express. J Geophys Res 114:E00B44

  • Gérard JC, Soret L, Piccioni G, Drossart P (2014) Latitudinal structure of the Venus O2 infrared airglow: a signature of small-scale dynamical processes in the upper atmosphere. Icarus 236:92–103. doi:10.1016/j.icarus.2014.03.028

  • Grassi D et al (2010) Thermal structure of Venusian nighttime mesosphere as observed by VIRTIS-Venus Express. J Geophys Res 115:E09007. doi:10.1029/2009JE003553

    ADS  Google Scholar 

  • Grassi D et al (2014) The Venus nighttime atmosphere as observed by the VIRTIS-M instrument. Average fields from the complete infrared data set. J Geophys Res Planets 119:837–849. doi:10.1002/2013JE004586

    Article  ADS  Google Scholar 

  • Grinspoon D et al (1993) Probing Venus’s cloud structure with Galileo NIMS. Planet Space Sci 41(7):515–542

    Article  ADS  Google Scholar 

  • Gurnett D et al (2001) Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature 409(6818):313–315

    Article  ADS  Google Scholar 

  • Hartogh P (2006) Submm wave sounding of the Venusian atmosphere. In: European Planetary Science Congress 2006. Berlin, Germany, 18–22 September 2006. p 378

  • Haus R, Kappel D, Arnold G (2015) Lower atmosphere minor gas abundances as retrieved from Venus Express VIRTIS-M-IR data at \(2.3\upmu \text{ m }\). Planet Space Sci 105:159–174. doi:10.1016/j.pss.2014.11.020

    Article  ADS  Google Scholar 

  • Häusler B et al (2006) Radio science investigations by VeRa onboard the Venus Express spacecraft. Planet Space Sci 54(13—-14):1315–1335. doi:10.1016/j.pss.2006.04.032

    Article  ADS  Google Scholar 

  • Hueso R, Peralta J, Sánchez-Lavega A (2012) Assessing the long-term variability of Venus wind at cloud level from VIRTIS-Venus Express. Icarus 217:585

    Article  ADS  Google Scholar 

  • Ignatiev NI et al (2009) Altimetry of the Venus cloud tops from the Venus Express observations. J Geophys Res 114(E5). doi:10.1029/2008JE003320

  • Khatuntsev IV et al (2013) Cloud level winds from the Venus Express monitoring camera imaging. Icarus 226:140

    Article  ADS  Google Scholar 

  • Kliore AJ, Moroz VI, Keating GM (1985) The Venus international reference atmosphere. In: Kliore AJ, Moroz VI, Keating GM (eds) Adv Space Res 5(11)

  • Knollenberg RG, Hunten DM (1980) The microphysics of the clouds of Venus—results of the Pioneer Venus particle size spectrometer experiment. J Geophys Res 85:8039

    Article  ADS  Google Scholar 

  • Lecacheux J, Drossart P, Laques P, Deladerriere F, Colas F (1993) Detection of the surface of Venus at 1.0 micrometer from ground-based observations. Planet Space Sci 41:543–549

    Article  ADS  Google Scholar 

  • Lundin R, Barabash S, Futaana Y, Holmström M, Perez-De-Tejada H, Sauvaud JA (2013) A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation. Geophys Res Lett 40:1273

    Article  ADS  Google Scholar 

  • Luz D et al (2011) Venus’s Southern Polar Vortex reveals precessing circulation. Science 332:5

    Article  Google Scholar 

  • Mahieux A, Vandaele AC, Neefs E, Robert S, Wilquet V, Drummond R, Federova A, Bertaux JL (2010) Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: retrieval technique. J Geophys Res 115:E12014. doi:10.1029/2010JE003589

  • Mahieux A, Vandaele AC, Robert S, Wilquet V, Drummond R, Montmessin F, Bertaux JL (2012) Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: carbon dioxide measurements at the Venus terminator. J Geophys Res 117:E07001. doi:10.1029/2012JE004058

  • Mahieux A et al (2015) Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express. Planet Space Sci 113–114:347–358. doi:10.1016/j.pss.2014.12.020

    Article  Google Scholar 

  • Marcq E, Bézard,B, Drossart P, Piccioni G, Reess JM, Henry F (2008) A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: spectroscopic studies using VIRTIS-H. J Geophys Res E113:0B07M

  • Marcq E et al (2011) An investigation of the \(\text{ SO }_{2}\) content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211:58–69

    Article  ADS  Google Scholar 

  • Marcq E et al (2013) Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nature Geosci 6:25–28

    ADS  Google Scholar 

  • Markiewicz WJ et al (2007) Venus monitoring camera for Venus Express. Planet Space Sci 55(12):1701–1711. doi:10.1016/j.pss.2007.01.004

    Article  ADS  Google Scholar 

  • Masunaga KY et al (2011) \(\text{ O }^{+}\) outflow channels around Venus controlled by directions of the interplanetary magnetic field: Observations of high energy \(\text{ O }^{+}\) ions around the terminator. J Geophys Res 116:A09326. doi:10.1029/2011JA016705

    ADS  Google Scholar 

  • Masunaga KY et al (2013) Dependence of \(\text{ O }^{+}\) escape rate from the Venusian upper atmosphere on IMF directions: VEX: \(\text{ O }^{+}\) escape rates and IMF directions. Geophys Res Lett 40(9):1682–1685. doi:10.1002/grl.50392

    Article  ADS  Google Scholar 

  • McGouldrick K, Baines KH, Momary TW, Grinspoon DH (2008), Venus Express/VIRTIS observations of middle and lower cloud variability and implications for dynamics. J Geophys Res 113:E00B14. doi:10.1029/2008JE003113

  • McGouldrick K, Momary TW, Baines KH, Grinspoon DH (2012) Quantification of middle and lower cloud variability and mesoscale dynamics from Venus Express/VIRTIS observations at \(1.74\upmu \text{ m }\). Icarus 217(2):615–628. doi:10.1016/j.icarus.2011.07.009

  • Migliorini A, Grassi D, Montabone L, Lebonnois S, Drossart P, Piccioni G (2012) Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express. Icarus 217(2):640–647. doi:10.1016/j.icarus.2011.07.013

    Article  ADS  Google Scholar 

  • Montmessin F et al (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216:82–85. doi:10.1016/j.icarus.2011.08.010

    Article  ADS  Google Scholar 

  • Mueller NT, Helbert J, Erard S, Piccioni G, Drossart P (2012) Rotation period of Venus estimated from Venus Express VIRTIS images and Magellan altimetry. Icarus 217:474

    Article  ADS  Google Scholar 

  • Nordström T, Stenberg G, Nilsson H, Barabash S, Zhang TL (2013) Venus ion outflow estimates at solar minimum: influence of reference frames and disturbed Solar wind conditions: Venus ion outflow estimates. J Geophys Res Space Phys 118(6):3592–3601. doi:10.1002/jgra.50305

    Article  ADS  Google Scholar 

  • Peralta J, Luz D, Berry DL, Tsang C, Sánchez-Lavega CC, Hueso R, Piccioni G, Drossart P (2012) Solar migrating atmospheric tides in the winds of the polar region of Venus. Icarus 220:958

    Article  ADS  Google Scholar 

  • Petrova EV, Shalygina OS, Markiewicz WJ (2015a) UV contrasts and microphysical properties of the upper clouds of Venus from the UV and NIR VMC/VEx images. Icarus 260:190

    Article  ADS  Google Scholar 

  • Petrova EV, Shalygina OS, Markiewicz WJ (2015b) The VMC/VEx photometry at small phase angles: glory and the physical properties of particles in the upper cloud layer of Venus. Planet Space Sci 113:120

    Article  ADS  Google Scholar 

  • Piccialli A et al (2012) Dynamical properties of the Venus mesosphere from the radio-occultation experiment VeRa onboard Venus Express. Icarus 217(2):669–681. doi:10.1016/j.icarus.2011.07.016

    Article  ADS  MathSciNet  Google Scholar 

  • Piccialli A et al (2014) High latitude gravity waves at the Venus cloud tops as observed by the Venus monitoring camera on board Venus Express. Icarus 227:94

    Article  ADS  Google Scholar 

  • Piccialli A et al (2015) Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet Space Sci 113–114:321–335. doi:10.1016/j.pss.2014.12.009

    Article  Google Scholar 

  • Piccioni G et al (2008) First detection of hydroxyl in the atmosphere of Venus. Astron Astrophys 483:29–33. doi:10.1051/0004-6361:20080976

  • Piccioni G et al (2009) Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere. J Geophys Res 114. doi:10.1029/2008JE003133

  • Royer E, Montmessin F, Bertaux JL (2010) NO emissions as observed by SPICAV during stellar occultations. Planet Space Sci 58:1314–1326. doi:10.1016/j.pss.2010.05.015

    Article  ADS  Google Scholar 

  • Russell CT (1991) Venus lightning. Space Sci Rev 55:317

    ADS  Google Scholar 

  • Russell CT, Zhang TL, Delva M, Magnes W, Strangeway RJ, Wei HY (2007) Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature 450:661

    Article  ADS  Google Scholar 

  • Russell CT, Strangeway RJ, Daniels JTM, Zhang TL, Wei HY (2011) Venus lightning: comparison with terrestrial lightning. Planet Space Sci 59:965

    Article  ADS  Google Scholar 

  • Sánchez-Lavega A et al (2008) Variable winds on Venus mapped in three dimensions. Geophys Res Lett 35:L13204. doi:10.1029/2008GL033817

    Article  ADS  Google Scholar 

  • Sandor BJ et al (2010) Sulfur chemistry in the Venus mesosphere from \(\text{ SO }_{2}\) and SO microwave spectra. Icarus 208(1):49–60

    Article  ADS  MathSciNet  Google Scholar 

  • Satoh T et al. (2009) Cloud structure in Venus middle-to-lower atmosphere as inferred from VEX/VIRTIS 1.74 mm data. J Geophys Res 114:E00B37. doi:10.1029/2008JE003184

  • Shalygin EV et al (2015) Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys Res Lett 42:4762

    Article  ADS  Google Scholar 

  • Shalygina OS, Petrova EV, Markiewicz WJ, Ignatiev NI, Shalygin EV (2015) Optical properties of the Venus upper clouds from the data obtained by Venus monitoring camera on-board the Venus Express. Planet Space Sci 113:135

    Article  ADS  Google Scholar 

  • Singh U et al (2014) Coherent Doppler Lidar for wind and cloud measurements on Venus from an orbiting or floating/flying platform. In: 40th COSPAR scientific assembly. Held 2–10 August 2014, in Moscow, Russia, Abstract B0.7-30-14

  • Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data. Science 328(5978):605–608

    Article  ADS  Google Scholar 

  • Soret L, Gérard JC, Piccioni G, Drossart P (2014) Time variations of O2(a1\(\Delta \)) nightglow spots on the Venus nightside and dynamics of the upper mesosphere. Icarus 237:306

    Article  ADS  Google Scholar 

  • Stenberg G, Nilsson H, Barabash S, Holmström M, Futaana Y (2014) Atmospheric escape and solar wind precipitation—a comparison between Mars and Venus. In: 40th COSPAR scientific assembly. 2–10 August 2014, Moscow, Russia, Abstract C3.2-21-14

  • Stewart AI, Barth CA (1979) Ultraviolet night airglow of Venus. Science 205:59–62

    Article  ADS  Google Scholar 

  • Stewart AI, Gérard JC, Rusch D, Bougher S (1980) Morphology of the Venus ultraviolet night airglow. J Geophys Res 85:7861–7870

    Article  ADS  Google Scholar 

  • Stiepen A, Soret L, Gérard JC, Cox C, Bertaux JL (2012) The vertical distribution of the Venus NO nightglow: limb profiles inversion and one- dimensional modeling. Icarus 220:981–989

    Article  ADS  Google Scholar 

  • Stiepen A, Gérard JC, Dumont M, Cox C, Bertaux JL (2013) Venus nitric oxide nightglow mapping from SPICAV Nadir observations. Icarus 226(1):428–436. doi:10.1016/j.icarus.2013.05.031

    Article  ADS  Google Scholar 

  • Svedhem H et al (2007) Venus Express—the first European mission to Venus. Planet Space Sci 55:1636–1652. doi:10.1016/j.pss.2007.01.01334

    Article  ADS  Google Scholar 

  • Svedhem H, Titov D, Wilson C (2012) Present status and future of Venus Express and results from atmospheric drag measurements. EGU Gen Assemb 14:12382

    Google Scholar 

  • Tellmann S, Pätzold M, Häusler B, Bird MK, Tyler GL (2009) Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. J Geophys Res 114:E00B36. doi:10.1029/2008JE003204

  • Tellmann S, Häusler B, Hinson D, Tyler GL, Andert TP, Bird MK, Imamura T, Pätzold M, Remus S (2012) Small-scale temperature fluctuations seen by the VeRa radio science experiment on Venus Express. Icarus 221(2):471–480. doi:10.1016/j.icarus.2012.08.023

    Article  ADS  Google Scholar 

  • Tsang CCC, Wilson CF, Barstow JK, Irwin PGJ, Taylor FW et al (2010) Correlations between cloud thickness and sub-cloud water abundance on Venus. Geophys Res Lett 37(2):5. doi:10.1029/2009GL041770

    Article  Google Scholar 

  • Vandaele AC et al (2008) Composition of the Venus mesosphere measured by solar occultation at infrared on board Venus Express. J Geophys Res 113(13). doi:10.1029/2008JE003140

  • Wilson CF et al (2008) Evidence for anomalous cloud particles at the poles of Venus. J Geophys Res 113:E00B13. doi:10.1029/2008JE003108

  • Zhang TL et al (2006) Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet Space Sci 54:1336–1343. doi:10.1016/j.pss.2006.04.018

    Article  ADS  Google Scholar 

  • Zhang TL et al (2012) Magnetic reconnection in the near Venusian magnetotail. Science 336:567

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the Centre National d’Etudes Spatiales (CNES) and the European Space Agency (ESA) for supporting all the Venus Express investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Drossart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drossart, P., Montmessin, F. The legacy of Venus Express: highlights from the first European planetary mission to Venus. Astron Astrophys Rev 23, 5 (2015). https://doi.org/10.1007/s00159-015-0088-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-015-0088-0

Keywords

Navigation