Skip to main content
Log in

Fail-safe topology optimization considering fatigue

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper proposes an efficient fail-safe approach considering fatigue. The method extends classical fail-safe optimization to the fatigue field in the framework of the solid isotropic material with penalization (SIMP) method. The material properties of the failure model are interpolated by using the equivalent fatigue von Mises stress. The worst-case compliance is considered to minimize as the optimization objective, using the Kreisselmeier–Steinhauser (KS) function to approximate the non-differentiable max-operator. The fatigue sensitivity is derived by the adjoint method, and a general fail-safe optimality criteria (FS-OC) method is developed to update design variables. Finally, the effectiveness of this method for fail-safe optimization is verified by several numerical examples with acceptable computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrozkiewicz O, Kriegesmann B (2018) Adaptive Strategies for Fail-Safe Topology Optimization. In: EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. Springer, pp 200–211

  • Ambrozkiewicz O, Kriegesmann B (2020) Density-based shape optimization for fail-safe design. J Comput Des Eng 7:615–629

    Google Scholar 

  • Arora JS, Haskell DF, Govil AK (1980) Optimal design of large structures for damage tolerance. Zoosyst Evol 18:563–570

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 72:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Díaz AR (1998) A method for treating damage related criteria in optimal topology design of continuum structures. Struct Optim 16:108–115

    Article  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidisc Optim 36:125–141

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  • Collet M, Bruggi M, Duysinx P (2017) Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance. Struct Multidisc Optim 55:839–855

    Article  MathSciNet  Google Scholar 

  • Feng Y, Moses F (1986) Optimum design, redundancy and reliability of structural systems. Comput Struct 24:239–251

    Article  Google Scholar 

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81:081009

    Article  Google Scholar 

  • Holmberg E, Torstenfelt B, Klarbring A (2014) Fatigue constrained topology optimization. Struct Multidisc Optim 50:207–219

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049

    Article  Google Scholar 

  • Jansen M, Lombaert G, Schevenels M, Sigmund O (2014) Topology optimization of fail-safe structures using a simplified local damage model. Struct Multidisc Optim 49:657–666

    Article  MathSciNet  Google Scholar 

  • Jeong SH, Choi DH, Yoon GH (2014) Fatigue and static failure considerations using a topology optimization method. Appl Math Modell 39:1137–1162

    Article  MATH  Google Scholar 

  • Kranz M, Lüdeker JK, Kriegesmann B (2021) An empirical study on stress-based fail-safe topology optimization and multiple load path design. Struct Multidisc Optim 64:2113–2134

    Article  Google Scholar 

  • Lee HA, Park GJ (2012) Topology optimization for structures with nonlinear behavior using the equivalent static loads method. J Mech Des 134:031004

    Article  Google Scholar 

  • Marhadi KS, Venkataraman S, Wong SA (2011) Load redistribution mechanism in damage tolerant and redundant truss structure. Struct Multidisc Optim 44:213–233

    Article  Google Scholar 

  • Michell AGM (1904) The limits of economy of material in frame-structures. Lond Edinb Dublin Philos Mag J Sci 8:589–597

    Article  MATH  Google Scholar 

  • Nabaki K, Shen JH, Huang X (2019) Evolutionary topology optimization of continuum structures considering fatigue failure. Mater Des 166:107586

    Article  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Park GJ, Lee Y (2018) Discussion on the optimality condition of the equivalent static loads method for linear dynamic response structural optimization. Struct Multidisc Optim 59:311–316

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN (2008) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37:217–237

    Article  MathSciNet  MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127

    Article  Google Scholar 

  • Sun PF, Arora JS, Haug EJ (1976) Fail-safe optimal design of structures. Eng Optim 2:43–53

    Article  Google Scholar 

  • Verbart A, Langelaar M, Keulen FV (2016) Damage approach: a new method for topology optimization with local stress constraints. Struct Multidisc Optim 53:1081–1098

    Article  MathSciNet  Google Scholar 

  • Wang HX, Liu J, Wen GL, Xie YM (2020) The robust fail-safe topological designs based on the von Mises stress. Finite Elem Anal Des 171:103376

    Article  MathSciNet  Google Scholar 

  • Wang HX, Liu J, Wen GL (2022) A study on fail-safe topological design of continuum structures with stress concentration alleviation. Struct Multidisc Optim 65:174

    Article  MathSciNet  Google Scholar 

  • Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput-Aided Des 42:708–719

    Article  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Article  Google Scholar 

  • Xu XK, Guo BF, Jin M (2017) A new bilateral density filter with cross template for structural topology optimization. J Mech Eng Sci 232:3823–3832

    Article  Google Scholar 

  • Yang XY, Xie YM, Steven GP, Querin OM (1999) Bidirectional evolutionary method for stiffness optimization. AIAA J 37:1483–1488

    Article  Google Scholar 

  • Zhang WS, Yuan J, Zhang J, Guo X (2015) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidisc Optim 53:1243–1260

    Article  MathSciNet  Google Scholar 

  • Zhou M, Fleury R (2016) Fail-safe topology optimization. Struct Multidisc Optim 54:1225–1243

    Article  Google Scholar 

  • Zhou M, Sigmund O (2021) Complementary lecture notes for teaching the 99/88-line topology optimization codes. Struct Multidisc Optim 64:3227–3231

    Article  MathSciNet  Google Scholar 

  • Zuo WJ, Saitou K (2016) Multi-material topology optimization using ordered SIMP interpolation. Struct Multidisc Optim 55:477–491

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11217020530) and the National Key Research and Development Program of China (No. 2020YFA0713604). The authors thank the anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The author states that the paper contains all information necessary to reproduce the results.

Additional information

Responsible Editor: Shikui Chen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Zhang, Y., Ou, Y. et al. Fail-safe topology optimization considering fatigue. Struct Multidisc Optim 66, 132 (2023). https://doi.org/10.1007/s00158-023-03588-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-023-03588-8

Keywords

Navigation