Skip to main content
Log in

System reliability-based design optimization with interval parameters by sequential moving asymptote method

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Reliability-based design optimization (RBDO) offers a powerful tool to deal with the structural design with heterogeneous interval parameters concurrently. However, it is time-consuming in the practical engineering design. Therefore, a novel sequential moving asymptote method (SMAM) is proposed to improve the computational efficiency for convex model in this study, in which the nested double-loop optimization problem is decoupled to a sequence of deterministic suboptimization problems based on the method of moving asymptotes. In addition, the sensitivity of reliability index is derived, so the finite difference for the nested optimization loop can be avoided to tremendously improve the computational efficiency. Then, the accuracy of the SMAM is proved based on the error analysis. Furthermore, the Kreisselmeier-Steinhauser (KS) function is used to assemble the multiple constraints to deal with the parallel and series RBDO problems. One benchmark mathematical example, three numerical examples, and one complex civil engineering example, i.e., tower crane, are tested to demonstrate the efficiency of the proposed method by comparison with other existing methods, and the results indicate that SMAM offers a general and effective tool for non-probabilistic reliability analysis and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

RBDO:

Reliability-based design optimization

d :

Design variables

SMAM:

Sequential moving asymptote method

p :

Super parameter

KS:

Kreisselmeier-Steinhauser

η :

Non-probabilistic reliability index

ANVM:

Advanced nominal value method

\( \hat{\eta} \) :

Approximated reliability index

LSF:

Limit state function

\( \underline{\eta} \) :

Target non-probabilistic reliability index

MCP:

Most concerned point

η series :

Non-probabilistic reliability index of series system

FORM:

First-order reliability method

η parallel :

Non-probabilistic reliability index of parallel system

CCSTM:

Chaotic conjugate stability transformation method

f(⋅):

Objective function

MMA:

Method of moving asymptotes

g(⋅):

Performance function

STM:

Stability transformation method

∇:

The first-order sensitivity operator

DSTM:

Directional stability transformation method

2 :

The second-order sensitivity operator

NRIA:

Non-probabilistic reliability index approach

δ:

Perturbation operator

CPA:

Concerned performance approach

λ :

Lagrange multiplier

FDM:

Finite difference method

E :

Failure event

x :

Uncertain variables in physical space

ε :

Convergence precision

q :

Uncertain variables in q-space

ξ :

Controlling parameter of KS function

References

  • Aoues Y, Chateauneuf A (2010) Benchmark study of numerical methods for reliability-based design optimization. Struct Multidisc Optim 41:277–294

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Haim Y (1994) A non-probabilistic concept of reliability. Struct Saf 14:227–245

    Article  Google Scholar 

  • Ben-Haim Y, Elishakoff I (1995) Discussion on: a non-probabilistic concept of reliability. Struct Saf 17:195–199

    Article  Google Scholar 

  • Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley, New York

  • Elishakoff I (1995) Essay on uncertainties in elastic and viscoelastic structures and viscoelastic structures—from a M Freudenthal’s criticisms to modern convex modelling. Comput Struct 56:871–895

    Article  MATH  Google Scholar 

  • Elishakoff I, Bekel Y (2013) Application of Lamé’s super ellipsoids to model initial imperfections. Int J Appl Mech 80:061006

    Article  Google Scholar 

  • Elishakoff I, Elettro F (2014) Interval, ellipsoidal, and super-ellipsoidal calculi for experimental and theoretical treatment of uncertainty: which one ought to be preferred. Int J Solids Struct 51:1576–1586

    Article  Google Scholar 

  • Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  • Ganzerli S, Pantelides CP (2000) Optimum structural design via convex model superposition. Comput Struct 74:639–647

    Article  Google Scholar 

  • Guo S (2014) Robust reliability method for non-fragile guaranteed cost control of parametric uncertain systems. Syst Control Lett 64:27–35

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Bai W, Zhang W, Gao X (2009) Confidence structural robust design and optimization under stiffness and load uncertainties. Comput Method Appl Mech Eng 198:3378–3399

    Article  MathSciNet  MATH  Google Scholar 

  • Hamzehkolaei NS, Miri M, Rashki M (2018) New simulation-based frameworks for multi-objective reliability-based design optimization of structures. Appl Math Model 62:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Hao P, Wang Y, Liu X, Wang B, Li G, Wang L (2017) An efficient adaptive-loop method for non-probabilistic reliability-based design optimization. Comput Method Appl Mech Eng 324:689–711

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Z, Du XP (2015) First order reliability method for time-variant problems using series expansions. Struct Multidiscip Optim 51:1–21

  • Jiang C, Han X, Lu GY, Liu J, Zhang Z, Bai YC (2011) Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput Method Appl Mech Eng 200:2528–2546

    Article  MATH  Google Scholar 

  • Jiang C, Bi RG, Lu GY, Han X (2013) Structural reliability analysis using non-probabilistic convex model. Comput Method Appl Mech Eng 254:83–98

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang C, Zhang QF, Han X, Liu J, Hu DA (2015) Multidimensional parallelepiped model-a new type of non-probabilistic convex model for structural uncertainty analysis. Int J Numer Meth Eng 103:31–59

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang C, Qiu H, Li X, Chen Z, Gao L, Li P (2019) Iterative reliable design space approach for efficient reliability-based design optimization. Eng Comput 36:151–169

    Article  Google Scholar 

  • Jiang C, Qiu H, Gao L, Wang D, Yang Z, Chen L (2020) Real-time estimation error-guided active learning Kriging method for time-dependent reliability analysis. Appl Math Model 77:82–98

    Article  MathSciNet  MATH  Google Scholar 

  • Kang Z, Bai S (2013) On robust design optimization of truss structures with bounded uncertainties. Struct Multidiscip Optim 47:699–714

  • Kang Z, Luo Y (2009) Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Method Appl Mech Eng 198:3228–3238

    Article  MathSciNet  MATH  Google Scholar 

  • Kang Z, Luo Y (2010) Reliability-based structural optimization with probability and convex set hybrid models. Struct Multidiscip Optim 42:89–102

  • Kang Z, Luo Y, Li A (2011) On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters. Struct Saf 33:196–205

    Article  Google Scholar 

  • Kang YJ, Lim OK, Noh Y (2016) Sequential statistical modeling method for distribution type identification. Struct Multidisc Optim 54:1587–1607

    Article  Google Scholar 

  • Kang YJ, Noh Y, Lim OK (2019) Integrated statistical modeling method: part I—statistical simulations for symmetric distributions. Struct Multidiscip Optim 60:1719–1740

  • Keshtegar B (2016) Chaotic conjugate stability transformation method for structural reliability analysis. Comput Method Appl Mech Eng 310:866–885

    Article  MathSciNet  MATH  Google Scholar 

  • Keshtegar B, Chakraborty S (2018) Dynamical accelerated performance measure approach for efficient reliability-based design optimization with highly nonlinear probabilistic constraints. Reliab Eng Syst Safe 178:69–83

    Article  Google Scholar 

  • Keshtegar B, Hao P (2018) A hybrid descent mean value for accurate and efficient performance measure approach of reliability-based design optimization. Comput Method Appl Mech Eng 336:237–259

    Article  MathSciNet  MATH  Google Scholar 

  • Keshtegar B, Meng D, Ben Seghier MEA, Xiao M, Trung N-T, Bui DT (2020) A hybrid sufficient performance measure approach to improve robustness and efficiency of reliability-based design optimization. Eng Comput. https://doi.org/10.1007/s00366-019-00907-w

  • Kreisselmeier G, Steinhauser R (1983) Application of vector performance optimization to a robust control loop design for a fighter aircraft. Int J Control 37:251–284

    Article  MATH  Google Scholar 

  • Lombardi M, Haftka RT (1998) Anti-optimization technique for structural design under load uncertainties. Comput Method Appl Mech Eng 157:19–31

    Article  MATH  Google Scholar 

  • Majumder L, Rao SS (2009) Interval-based multi-objective optimization of aircraft wings under gust loads. AIAA J 47:563–575

    Article  Google Scholar 

  • Meng Z, Keshtegar B (2019) Adaptive conjugate single-loop method for efficient reliability-based design and topology optimization. Comput Method Appl Mech Eng 344:95–119

    Article  MathSciNet  MATH  Google Scholar 

  • Meng Z, Zhou H (2018) New target performance approach for a super parametric convex model of non-probabilistic reliability-based design optimization. Comput Method Appl Mech Eng 339:644–662

    Article  MathSciNet  MATH  Google Scholar 

  • Meng Z, Li G, Yang D, Zhan L (2017) A new directional stability transformation method of chaos control for first order reliability analysis. Struct Multidiscip Optim 55:601–612

  • Meng Z, Hu H, Zhou H (2018) Super parametric convex model and its application for non-probabilistic reliability-based design optimization. Appl Math Model 55:354–370

    Article  MathSciNet  MATH  Google Scholar 

  • Meng Z, Zhang Z, Zhou H (2020) A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters. Appl Math Model 77:773–787

    Article  MathSciNet  MATH  Google Scholar 

  • Moens D, Vandepitte D (2006) Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch Comput Method Eng 3:389–464

    Article  MathSciNet  MATH  Google Scholar 

  • Ni BY, Jiang C, Huang ZL (2018) Discussions on non-probabilistic convex modelling for uncertain problems. Appl Math Model 59:54–85

    Article  MathSciNet  MATH  Google Scholar 

  • Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput Method Appl Mech Eng 191:3491–3507

    Article  MATH  Google Scholar 

  • Qiu Z, Elishakoff I (1998) Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput Method Appl Mech Eng 152:361–372

    Article  MATH  Google Scholar 

  • Qiu Z, Ma Y, Wang X (2004) Comparison between non-probabilistic interval analysis method and probabilistic approach in static response problem of structures with uncertain-but-bounded parameters. Commun Numer Meth Eng 20:279–290

    Article  MATH  Google Scholar 

  • Sofi A, Romeo E (2018) A unified response surface framework for the interval and stochastic finite element analysis of structures with uncertain parameters. Probab Eng Mech 54:25–36

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Meth Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tsompanakis Y, Papadrakakis M (2004) Large-scale reliability-based structural optimization. Struct Multidiscip Optim 26:429–440

  • Wang X, Qiu Z, Elishakoff I (2008) Non-probabilistic set-theoretic model for structural safety measure. Acta Mech 198:51–64

    Article  MATH  Google Scholar 

  • Wang L, Xiong C, Yang Y (2018a) A novel methodology of reliability-based multidisciplinary design optimization under hybrid interval and fuzzy uncertainties. Comput Method Appl Mech Eng 337:439–457

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Wang R, Wang L, Chen X, Geng X (2018b) An efficient single-loop strategy for reliability-based multidisciplinary design optimization under non-probabilistic set theory. Aerosp Sci Technol 73:148–163

    Article  Google Scholar 

  • Wang L, Wang X, Li Y, Hu J (2019) A non-probabilistic time-variant reliable control method for structural vibration suppression problems with interval uncertainties. Mech Syst Signal Process 115:301–322

    Article  Google Scholar 

  • Wu J, Zhang D, Liu J, Jia X, Han X (2020) A computational framework of kinematic accuracy reliability analysis for industrial robots. Appl Math Model 82:189–216

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao NC, Yuan K, Tang Z, Wan H (2020) Surrogate model-based reliability analysis for structural systems with correlated distribution parameters. Struct Multidiscip Optim 62:495–509

  • Yang DX (2010) Chaos control for numerical instability of first order reliability method. Commun Nonlinear Sci Numer Simul 15:3131–3141

    Article  MATH  Google Scholar 

  • Yi P, Cheng G, Jiang L (2008) A sequential approximate programming strategy for performance-measure-based probabilistic structural design optimization. Struct Saf 30:91–109

    Article  Google Scholar 

  • Youn BD, Wang P (2008) Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method. Struct Multidiscip Optim 36:107–123

  • Zhang J, Xiao M, Gao L, Chu S (2019) Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine. Comput-Aided Civ Inf Eng 34:991–1009

  • Zhang D, Han X (2020) Kinematic reliability analysis of robotic manipulator. J Mech Des 142

  • Zhao G, Liu J, Wen G, Li F, Chen Z (2018) Non-probabilistic convex model theory to obtain failure shear stress of simulated lunar soil under interval uncertainties. Probab Eng Mech 53:87–94

    Article  Google Scholar 

  • Zhu SP, Keshtegar B, Chakraborty S, Trung NT (2020) Novel probabilistic model for searching most probable point in structural reliability analysis. Comput Method Appl Mech Eng 366:113027

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Krister Svanberg for providing the MATLAB MMA code.

Funding

The supports of the National Natural Science Foundation of China (Grant No. 11972143) and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2020HGPA0112) are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanlin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The algorithm provided in this article is part of the software we are developing. As the software cannot be published due to confidential issue of the funded project, detailed explanation about how the algorithm is implemented in Section 3. Based on the MMA code developed by Svanberg (1987), the proposed algorithm is easy to code. Readers are welcome to contact the authors for details and further explanations.

Additional information

Responsible Editor: Yoojeong Noh

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the proposed SMAM, we develop the approximate sensitivity analysis method to substitute the FDM in order to promote the efficiency, and the corresponding computational error should be performed. By using the Taylor expansion, we can expand the performance function at the MCP, which is formulated as follows:

$$ g\left({\mathbf{d}}^m,{\mathbf{q}}^m\right)=g\left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)+{\nabla}_{\mathbf{q}}g{\left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)}^{\mathrm{T}}\left({\mathbf{q}}^m-{\mathbf{q}}^{\ast}\right)+O\left({\left\Vert \left({\mathbf{q}}^m-{\mathbf{q}}^{\ast}\right)\right\Vert}^2\right) $$
(39)
$$ {\nabla}_{\mathbf{d}}g\left({\mathbf{d}}^m,{\mathbf{q}}^m\right)={\nabla}_{\mathbf{d}}g\left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)+{\nabla}_{\mathbf{d}\mathbf{q}}^2g{\left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)}^{\mathrm{T}}\left({\mathbf{q}}^m-{\mathbf{q}}^{\ast}\right)+O\left({\left\Vert \left({\mathbf{q}}^m-{\mathbf{q}}^{\ast}\right)\right\Vert}^2\right) $$
(40)

where ∇2g denotes the second-order derivative of function g. Then, the sensitivity of approximate non-probabilistic reliability index with respect to design variables in SMAM can be written as follows:

$$ {\displaystyle \begin{array}{c}{\nabla}_{d^m}\hat{\eta}=\frac{\nabla_{d^m}g\left({d}^m,{q}^m\right)}{{\left\Vert {\nabla}_{q^m}g\left({d}^m,{q}^m\right)\right\Vert}_{\frac{p}{p-1}}}\\ {}=\left(\frac{\nabla_dg\left({d}^m,{q}^{\ast}\right)+{\nabla}_{dq}^2g{\left({d}^m,{q}^{\ast}\right)}^{\mathrm{T}}\left({q}^m-{q}^{\ast}\right)+O\left({\left\Vert \left({q}^m-{q}^{\ast}\right)\right\Vert}^2\right)}{{\left\Vert {\nabla}_qg\left({d}^m,{q}^{\ast}\right)\right\Vert}_{\frac{p}{p-1}}}\right)\times \frac{{\left\Vert {\nabla}_qg\left({d}^m,{q}^{\ast}\right)\right\Vert}_{\frac{p}{p-1}}}{{\left\Vert {\nabla}_qg\left({d}^k,{q}^m\right)\right\Vert}_{\frac{p}{p-1}}}\end{array}} $$
(41)

In (41), the term \( \frac{{\left\Vert {\nabla}_{\mathbf{q}}g\left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)\right\Vert}_{\frac{p}{p-1}}}{{\left\Vert {\nabla}_{\mathbf{q}}g\left({\mathbf{d}}^k,{\mathbf{q}}^m\right)\right\Vert}_{\frac{p}{p-1}}} \) can be expanded as follows:

$$ {\displaystyle \begin{array}{c}\frac{{\left\Vert {\nabla}_qg\left({d}^m,{q}^{\ast}\right)\right\Vert}_{\frac{p}{p-1}}}{{\left\Vert {\nabla}_qg\left({d}^m,{q}^m\right)\right\Vert}_{\frac{p}{p-1}}}={\left(\frac{\sum \limits_{i=1}^n{\left|{\nabla}_qg\left({q}_i^{\ast}\right)+{\nabla}_{qq}^2g{\left({q}_i\right)}^{\mathrm{T}}\left({q}_i^m-{q}_i^{\ast}\right)+O\left({\left\Vert \left({q}_i^m-{q}_i^{\ast}\right)\right\Vert}^2\right)\right|}^{\frac{p}{p-1}}}{\sum \limits_{i=1}^n{\left|{\nabla}_qg\left({q}_i^{\ast}\right)\right|}^{\frac{p}{p-1}}}\right)}^{\frac{p-1}{p}}\\ {}\le {\left(1+\frac{\sum \limits_{i=1}^{nq}{\left|{\nabla}_{qq}^2g{\left({q}_i\right)}^{\mathrm{T}}\left({q}_i^m-{q}_i^{\ast}\right)+O\left({\left\Vert \left({q}_i^m-{q}_i^{\ast}\right)\right\Vert}^2\right)\right|}^{\frac{p}{p-1}}}{\sum \limits_{i=1}^{nq}{\left|{\nabla}_qg\left({q}_i^{\ast}\right)\right|}^{\frac{p}{p-1}}}\right)}^{\frac{p-1}{p}}\\ {}=1+O\left(\left\Vert \left({q}^m-{q}^{\ast}\right)\right\Vert \right)\end{array}} $$
(42)

Hence, \( {\nabla}_{{\mathbf{d}}^m}\hat{\eta} \) satisfies:

$$ {\displaystyle \begin{array}{c}{\nabla}_d\eta =\frac{\nabla_dg\left({d}^m,{q}^{\ast}\right)}{{\left\Vert {\nabla}_qg\left({d}^m,{q}^{\ast}\right)\right\Vert}_{\frac{p}{p-1}}}\\ {}=\left(\frac{\nabla_dg\left({d}^m,{q}^{\ast}\right)+{\nabla}_{dq}^2g{\left({d}^m,{q}^{\ast}\right)}^{\mathrm{T}}\left({q}^m-{q}^{\ast}\right)+O\left({\left\Vert \left({q}^m-{q}^{\ast}\right)\right\Vert}^2\right)}{{\left\Vert {\nabla}_qg\left({d}^m,{q}^{\ast}\right)\right\Vert}_{\frac{p}{p-1}}}\right)\times \left(1+O\left(\left\Vert \left({q}^m-{q}^{\ast}\right)\right\Vert \right)\right)\\ {}={\nabla}_d\hat{\eta}+\frac{\nabla_{dq}^2g{\left({d}^m,{q}^{\ast}\right)}^{\mathrm{T}}\left({q}^m-{q}^{\ast}\right)}{{\left\Vert {\nabla}_qg\left({d}^m,{q}^{\ast}\right)\right\Vert}_{\frac{p}{p-1}}}+O\left({\left\Vert \left({q}^m-{q}^{\ast}\right)\right\Vert}^2\right)\\ {}={\nabla}_d\hat{\eta}+O\left({q}^m-{q}^{\ast}\right)\end{array}} $$
(43)

For reliability index, it can be expanded by Taylor expansion.

$$ \eta \left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)=\hat{\eta}\left({\mathbf{d}}^m,{\mathbf{q}}^m\right)+{\left({\nabla}_{\mathbf{d}}\hat{\eta}\left({\mathbf{d}}^m,{\mathbf{q}}^m\right)\right)}^T\left(\mathbf{d}-{\mathbf{d}}^m\right)+O\left(\left\Vert {\left(\mathbf{d}-{\mathbf{d}}^m\right)}^2\right\Vert \right) $$
(44)
$$ \eta \left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)=\eta \left({\mathbf{d}}^m,{\mathbf{q}}^m\right)+{\left({\nabla}_{\mathbf{d}}\eta \left({\mathbf{d}}^m,{\mathbf{q}}^m\right)\right)}^T\left({\mathbf{d}}^m-{\mathbf{d}}^{\ast}\right)+O\left(\left\Vert {\left({\mathbf{d}}^m-{\mathbf{d}}^{\ast}\right)}^2\right\Vert \right) $$
(45)
$$ {\nabla}_{\mathbf{d}}\eta \left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)={\nabla}_{\mathbf{d}}\hat{\eta}\left({\mathbf{d}}^m,{\mathbf{q}}^m\right)+O\left(\left\Vert \left({\mathbf{q}}^m-{\mathbf{q}}^{\ast}\right)\right\Vert \right) $$
(46)
$$ {\nabla}_{\mathbf{d}}\hat{\eta}\left({\mathbf{d}}^m,{\mathbf{q}}^m\right)={\nabla}_{\mathbf{d}}\eta \left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)-O\left(\left\Vert \left({\mathbf{q}}^m-{\mathbf{q}}^{\ast}\right)\right\Vert \right) $$
(47)
$$ {\nabla}_{\mathbf{d}}\hat{\eta}\left({\mathbf{d}}^m,{\mathbf{q}}^m\right)={\nabla}_{\mathbf{d}}\eta \left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)+{\left({\nabla}_{\mathbf{d}\mathbf{q}}^2\hat{\eta}\left({\mathbf{d}}^m,{\mathbf{q}}^{\ast}\right)\right)}^T\left({\mathbf{q}}^{\ast }-{\mathbf{q}}^m\right)+O\left(\left\Vert {\left({\mathbf{q}}^m-{\mathbf{q}}^{\ast}\right)}^2\right\Vert \right) $$
(48)

Considering q is the optimal solution, which satisfies ∇qη(dm, q) = 0, so the error of reliability constraint can be computed as follows:

$$ {\displaystyle \begin{array}{c}{\eta}_j-\left({\hat{\eta}}_j^m+{\left({\nabla}_{d^m}{\hat{\eta}}_j\right)}^T\left(d-{d}^m\right)\right)\\ {}={\eta}_j-\left({\hat{\eta}}_j^m+{\left({\nabla}_d\eta \left({d}^m,{q}^{\ast}\right)-O\left({q}^m-{q}^{\ast}\right)\right)}^T\left(d-{d}^m\right)\right)\\ {}={\eta}_j-{\hat{\eta}}_j^m-\left({\nabla}_d\eta \left({d}^m,{q}^{\ast}\right)\left(d-{d}^m\right)-O\left(\left\Vert \left({q}^m-{q}^{\ast}\right)\right\Vert \left\Vert d-{d}^m\right\Vert \right)\right)\\ {}={\left({\nabla}_d\hat{\eta}\left({d}^m,{q}^m\right)-{\nabla}_d\eta \left({d}^m,{q}^{\ast}\right)\right)}^T\left(d-{d}^m\right)+O\left(\left\Vert {\left(d-{d}^m\right)}^2\right\Vert \right)+O\left(\left\Vert \left({q}^m-{q}^{\ast}\right)\right\Vert \left\Vert d-{d}^m\right\Vert \right)\\ {}=O\left(\left\Vert {\left(d-{d}^m\right)}^2\right\Vert \right)+O\left(\left\Vert \left({q}^m-{q}^{\ast}\right)\right\Vert \left\Vert d-{d}^m\right\Vert \right)\end{array}} $$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Ren, S., Wang, X. et al. System reliability-based design optimization with interval parameters by sequential moving asymptote method. Struct Multidisc Optim 63, 1767–1788 (2021). https://doi.org/10.1007/s00158-020-02775-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02775-1

Keywords

Navigation