Skip to main content
Log in

An improved two-stage framework of evidence-based design optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, an improved two-stage framework is presented to handle the evidence-based design optimization (EBDO) problem under epistemic uncertainty. The improvements include two aspects: (1) in the first stage, the equal areas method is employed to transform evidence variables into random variables, which avoids the assumption that unknown evidence variables and parameters obey the normal distribution. Then, a reliability-based design optimization (RBDO) problem with random variables is defined and solved by the sequential optimization and reliability assessment (SORA) method; (2) in the second stage, an improved algorithm is presented, which can calculate the plausibility of constraint violation more efficiently by continuously recording the minimum and maximum values of limit-state functions. The computational accuracy and efficiency of the improved framework are tested by numerical and engineering examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

RBDO:

Reliability-based design optimization

EBDO:

Evidence-based design optimization

FD:

Frame of discernment

BPA:

Basic probability assignment

Bel :

Belief

Pl :

Plausibility

SORA:

Sequential optimization and reliability assessment

HMV:

Hybrid mean value

MPTP:

Minimum performance target point

PDF:

Probability density function

RBF:

Radial basis functions

ND:

Normal distribution

References

  • Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab Eng Syst Saf 85(1):281–294

    Article  Google Scholar 

  • Alyanak E, Grandhi R, Bae HR (2008) Gradient projection for reliability-based design optimization using evidence theory. Eng Optim 40(10):923–935

    Article  Google Scholar 

  • Bae HR, Grandhi RV, Canfield RA (2004a) An approximation approach for uncertainty quantification using evidence theory. Reliab Eng Syst Saf 86(3):215–225

    Article  Google Scholar 

  • Bae HR, Grandhi RV, Canfield RA (2004b) Epistemic uncertainty quantification techniques including evidence theory for large-scale structures. Comput Struct 82(13):1101–1112

    Article  Google Scholar 

  • Bai YC, Han X, Jiang C, Liu J (2012) Comparative study of metamodeling techniques for reliability analysis using evidence theory. Adv Eng Softw 53(11):61–71

    Article  Google Scholar 

  • Du XP (2006) Uncertainty analysis with probability and evidence theories. In: Proceedings of the 2006 ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference, ASME Paper DETC2006–99078

  • Du XP (2008) Unified uncertainty analysis by the first order reliability method. ASME J Mech Des 130(9):091401

    Article  Google Scholar 

  • Du XP, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. ASME J Mech Des 2:225–233

    Article  Google Scholar 

  • Hao P, Wang YT, Liu C, Wang B, Wu H (2017) A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method. Comput Methods Appl Mech Eng 318:572–593

    Article  MathSciNet  Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • Huang HZ, Zhang X (2009) Design optimization with discrete and continuous variables of aleatory and epistemic uncertainties. ASME J Mech Des 131(3):031006

    Article  Google Scholar 

  • Huang HZ, He LP, Liu Y, Xiao NC, Li YF, Wang ZL (2013) Possibility and evidence-based reliability analysis and design optimization. Am. J Eng Appl Sci 6(1):95–136

    Article  Google Scholar 

  • Huang ZL, Jiang C, Zhou YS, Luo Z, Zhang Z (2016) An incremental shifting vector approach for reliability-based design optimization. Struct Multidiscip Optim 53(3):523–525

    Article  MathSciNet  Google Scholar 

  • Huang ZL, Jiang C, Zhang Z, Fang T, Han X (2017) A decoupling approach for evidence-theory-based reliability design optimization. Struct Multidiscip Optim 56(3):647–661. https://doi.org/10.1007/s00158-017-1680-x

  • Jiang C, Bi RG, Lu GY, Han X (2013a) Structural reliability analysis using non-probabilistic convex model. Comput Methods Appl Mech Eng 254(2):83–98

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang C, Zhang Z, Han X, Liu J (2013b) A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty. Comput Struct 129:1–12

    Article  Google Scholar 

  • Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 73(11):157–181

    Article  MathSciNet  MATH  Google Scholar 

  • Kiureghian AD, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112

    Article  Google Scholar 

  • Li F, Luo Z, Rong JH, Zhang N (2013) Interval multi-objective optimization of structures using adaptive kriging approximations. Comput Struct 119(4):68–84

    Article  Google Scholar 

  • Li G, Lu Z, Xu J (2015) A fuzzy reliability approach for structures based on the probability perspective. Struct Saf 54:10–18

    Article  Google Scholar 

  • Meng D, Li YF, Huang HZ, Wang Z, Liu Y (2015a) Reliability-based multidisciplinary design optimization using subset simulation analysis and its application in the hydraulic transmission mechanism design. ASME J Mech Des 137(5):051402

    Article  Google Scholar 

  • Meng Z, Li G, Wang BP, Hao P (2015b) A hybrid chaos control approach of the performance measure functions for reliability-based design optimization. Comput Struct 146:32–43

    Article  Google Scholar 

  • Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Mourelatos ZP, Zhou J (2006) A design optimization method using evidence theory. ASME J Mech Des 128(4):901–908

    Article  Google Scholar 

  • Oberkampf WL, Helton JC (2002) Investigation of evidence theory for engineering applications. In: AIAA non-deterministic approaches forum. No. AIAA 2002–1569, Denver, April

  • Oberkampf WL, Helton JC, Sentz K (2001) Mathematical representations of uncertainty. In: AIAA non-deterministic approaches forum, no. AIAA 2001–1645, Seattle, WA, April

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472

    Article  MathSciNet  MATH  Google Scholar 

  • Salehghaffari S, Rais-Rohani M, Marin EB, Bammann DJ (2013) Optimization of structures under material parameter uncertainty using evidence theory. Eng Optim 45(9):1027–1041

    Article  Google Scholar 

  • Sentz K, Ferson S (2002) Combination of evidence in Dempster-Shafer theory. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton university press, Princeton

    MATH  Google Scholar 

  • Shan S, Wang GG (2008) Reliable design space and complete single-loop reliability-based design optimization. Reliab Eng Syst Saf 93(8):1218–1230

    Article  Google Scholar 

  • Srivastava RK, Deb K, Tulshyan R (2013) An evolutionary algorithm based approach to design optimization using evidence theory. ASME J Mech Des 135(8):081003

    Article  Google Scholar 

  • Wang Z, Wang P (2014) A maximum confidence enhancement based sequential sampling scheme for simulation-based design. ASME J Mech Des 136(2):021006

    Article  Google Scholar 

  • Wu J, Luo Z, Zhang Y, Zhang N, Chen L (2013) Interval uncertain method for multibody mechanical systems using chebyshev inclusion functions. Int J Numer Meth Eng 95(7):608–630

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao M, Gao L, Xiong HH, Luo Z (2015) An efficient method for reliability analysis under epistemic uncertainty based on evidence theory and support vector regression. J Eng Des 26(10–12):1–25

    Google Scholar 

  • Yager R, Fedrizzi M, Kacprzyk J (1994) Advances in the Dempster-Shafer theory of evidence. Wiley, New York

    MATH  Google Scholar 

  • Yang X, Liu Y, Zhang Y, Yue Z (2015) Probability and convex set hybrid reliability analysis based on active learning Kriging model. Appl Math Model 39(14):3954–3971

    Article  MathSciNet  Google Scholar 

  • Yang X, Liu Y, Gao Y (2016) Unified reliability analysis by active learning kriging model combining with random-set based Monte Carlo simulation method. Int J Numer Meth Eng 108(11):1343–1361

    Article  MathSciNet  Google Scholar 

  • Yang X, Liu Y, Ma P (2017) Structural reliability analysis under evidence theory using the active learning kriging model. Eng Optim:1–17. https://doi.org/10.1080/0305215X.2016.1277063

  • Yao W, Chen X, Huang Y, Gurdal Z, van Tooren M (2013) Sequential optimization and mixed uncertainty analysis method for reliability-based optimization. AIAA J 51(9):2266–2277

    Article  Google Scholar 

  • Yi P, Zhu Z (2016) Step length adjustment iterative algorithm for inverse reliability analysis. Struct Multidiscip Optim 54(4):1–11

    Article  MathSciNet  Google Scholar 

  • Youn BD, Choi KK, Park YH (2003) Hybrid analysis method for reliability-based design optimization. ASME J Mech Des 125(2):221–232

    Article  Google Scholar 

  • Youn BD, Choi KK, Du L (2005) Enriched performance measure approach for reliability-based design optimization. AIAA J 43(4):874–884

    Article  Google Scholar 

  • Youn BD, Xi Z, Wang P (2008) Eigenvector dimension reduction (EDR) method for sensitivity-free probability analysis. Struct Multidiscip Optim 37(1):13–28

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zhang X, Huang HZ (2010) Sequential optimization and reliability assessment for multidisciplinary design optimization under aleatory and epistemic uncertainties. Struct Multidiscip Optim 40(1):165–175

    Article  Google Scholar 

  • Zhang Z, Jiang C, Han X, Hu D, Yu S (2014) A response surface approach for structural reliability analysis using evidence theory. Adv Eng Softw 69:37–45

    Article  Google Scholar 

  • Zhang Z, Jiang C, Wang GG, Han X (2015) First and second order approximate reliability analysis methods using evidence theory. Reliab Eng Syst Saf 137:40–49

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China [grant numbers 51675196 and 51721092].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Xiao.

Additional information

Responsible Editor: Jianbin Du

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xiao, M., Gao, L. et al. An improved two-stage framework of evidence-based design optimization. Struct Multidisc Optim 58, 1673–1693 (2018). https://doi.org/10.1007/s00158-018-1991-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1991-6

Keywords

Navigation