Skip to main content
Log in

Topology optimization using the p-version of the finite element method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A multiresolution topology optimization approach is proposed using the p-version finite element method (p-version FEM). Traditional topology optimization, where a density design variable is assigned to each element, is suitable for low-order h-version FEM. However, it cannot take advantage of the higher accuracy of higher-order p-version FEM analysis for generating results with higher resolution. In contrast, the proposed method separates density variables and finite elements so that the resolution of the density field, which defines the structure, can be higher than that of the finite element mesh. Thus, the method can take full advantage of the higher accuracy of p-version FEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Figure 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493–505

    Article  MathSciNet  MATH  Google Scholar 

  • Aage N, Nobel-Jørgensen M, Andreasen CS, Sigmund O (2013) Interactive topology optimization on hand-held devices. Struct Multidiscip Optim 47(1):1–6

    Article  Google Scholar 

  • Aage N, Andreassen E, Lazarov BS (2014) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565–572

    Article  MathSciNet  Google Scholar 

  • Amir O, Bendsøe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78(12):1474–1491

    Article  MathSciNet  MATH  Google Scholar 

  • Amir O, Stolpe M, Sigmund O (2010) Efficient use of iterative solvers in nested topology optimization. Struct Multidiscip Optim 42(1):55–72

    Article  MATH  Google Scholar 

  • Amir O, Aage N, Lazarov BS (2014) On multigrid-CG for efficient topology optimization. Struct Multidiscip Optim 49(5):815–829

    Article  MathSciNet  Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229

    Article  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Challis VJ, Roberts AP, Grotowski JF (2014) High resolution topology optimization using graphics processing units (GPUs). Struct Multidiscip Optim 49(2):315–325

    Article  Google Scholar 

  • Cook RD, Malkus DS, Plesha ME, Witt RJ (2007) Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York

  • Costa JCA Jr, Alves MK (2003) Layout optimization with h-adaptivity of structures. Int J Numer Methods Eng 58(1):83–102

    Article  MATH  Google Scholar 

  • Diaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Multidiscip Optim 10(1):40–45

    Article  Google Scholar 

  • Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52(7):673–703

    Article  MATH  Google Scholar 

  • Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45):3768–3782

    Article  MathSciNet  MATH  Google Scholar 

  • Evgrafov A (2014) State space Newton’s method for topology optimization. Comput Methods Appl Mech Eng 278:272–290

    Article  MathSciNet  Google Scholar 

  • Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36(4):329–345

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Smith Genut LC (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng 81(8):1019–1045

    MATH  Google Scholar 

  • Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009

    Article  Google Scholar 

  • Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226

    Article  MathSciNet  MATH  Google Scholar 

  • Kim JE, Jang GW, Kim YY (2003) Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization. Int J Solids Struct 40(23):6473–6496

    Article  MATH  Google Scholar 

  • Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41(9–10):2623–2641

    Article  MATH  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620

    Article  Google Scholar 

  • Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9):985–996

    Article  MathSciNet  MATH  Google Scholar 

  • Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59(14):1925–1944

    Article  MathSciNet  MATH  Google Scholar 

  • Maute K, Ramm E (1995) Adaptive topology optimization. Struct Multidiscip Optim 10(2):100–112

    Article  MATH  Google Scholar 

  • Mello LAM, De Sturler E, Paulino GH, Silva ECN (2010) Recycling Krylov subspaces for efficient large-scale electrical impedance tomography. Comput Methods Appl Mech Eng 199(49–52):3101–3110

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen TH (2010) System reliability-based design and multiresolution topology optimization. Ph.D thesis, University of Illinois at Urbana-Champaign

  • Nguyen TH, Paulino GH, Song J, Le CH (2010a) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen TH, Song J, Paulino GH (2010b) Single-loop system reliability-based design optimization using matrix-based system reliability method: theory and applications. J Mech Des 132(1):011005

    Article  Google Scholar 

  • Nguyen TH, Song J, Paulino GH (2010c) Challenges and advances in system reliability based optimization of structural topology. In: Proceedings of the 19th Analysis and Computation Specialty Conference, ASCE Conf. Proc. doi:10.1061/41131(370)42

  • Nguyen TH, Song J, Paulino GH (2011) Single-loop system reliability-based topology optimization considering statistical dependence between limit-states. Struct Multidiscip Optim 44(5):593–611

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92(6):507–530

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen TH, Le CH, Hajjar JF (2013) High-order finite elements for topology optimization. In: 10th world congress on structural and multidisciplinary optimization, Orlando

  • Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33(4):375–386

    Article  MathSciNet  MATH  Google Scholar 

  • Olhoff N, Bendsøe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1):259–279

    Article  MATH  Google Scholar 

  • Parvizian J, Düster A, Rank E (2012) Topology optimization using the finite cell method. Optim Eng 13(1):57–78

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany G (1996) Some shortcomings in Michell’s truss theory. Struct Multidiscip Optim 12(4):244–250

    Article  MathSciNet  Google Scholar 

  • Rozvany G (1998) Exact analytical solutions for some popular benchmark problems in topology optimization. Struct Multidiscip Optim 15(1):42–48

    Article  MATH  Google Scholar 

  • Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4(3):250–252

    Article  Google Scholar 

  • Schmidt S, Schulz V (2012) A 2589 line topology optimization code written for the graphics card. Comput Vis Sci 16:249–256

    MathSciNet  Google Scholar 

  • Sigmund O (2000) Topology optimization: a tool for the tailoring of structures and materials. Philos Trans R Soc London, Ser A 358:211–227

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401–424

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscip Optim 16(1):68–75

    Article  Google Scholar 

  • Stainko R (2006) An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun Numer Methods Eng 22(2):109–118

    Article  MathSciNet  MATH  Google Scholar 

  • Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci 107(30):13222–13227

    Article  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Szabo BA, Babuska I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  • Szabó B, Düster A, Rank E (eds) (2004) The p-Version of the Finite Element Method vol 1. Encyclopedia of Computational Mechanics

  • Takezawa A, Kitamura M (2012) Geometrical design of thermoelectric generators based on topology optimization. Int J Numer Methods Eng 90(11):1363–1392

    Article  MATH  Google Scholar 

  • Toogood R, Zecher J (2013) Creo Parametric 2.0 Tutorial. SDC Publications

  • Vatanabe SL, Paulino GH, Silva ECN (2012) Influence of pattern gradation on the design of piezocomposite energy harvesting devices using topology optimization. Compos Part B 43(6):2646–2654

    Article  Google Scholar 

  • Wang S, Sturler E, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260

Download references

Acknowledgements

This research was funded in part by the National Science Foundation under the Grant No. CMMI-1000666 and by Northeastern University. This support is gratefully acknowledged. The second author would like to thank the Vietnam National Foundation for Science and Technology Development (NAFOSTED) for the support under Grant No.107.02-2014.33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tam H. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Le, C.H. & Hajjar, J.F. Topology optimization using the p-version of the finite element method. Struct Multidisc Optim 56, 571–586 (2017). https://doi.org/10.1007/s00158-017-1675-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1675-7

Keywords

Navigation