Skip to main content
Log in

An efficient method for reliability-based design optimization of nonlinear inelastic steel space frames

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper proposes an effective numerical procedure for reliability-based design optimization (RBDO) of nonlinear inelastic steel frames by integrating a harmony search technique (HS) for optimization and a robust method for failure probability analysis. The practical advanced analysis using the beam-column approach is used for capturing the nonlinear inelastic behaviors of frames, while a detail implement of HS for discrete optimization of steel frames is introduced. The failure probability of structures is evaluated by using the combination of the improved Latin Hypercube (IHS) and a new effective importance sampling (EIS). The efficiency and accuracy of the proposed procedure are demonstrated through three mathematical examples and five steel frames. The results obtained in this paper prove that the proposed procedure is computationally efficient and can be applied in practical design. Furthermore, it is shown that the use of nonlinear inelastic analysis in the optimization of steel frames yields more realistic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • AISC-LRFD (1999) Manual of steel construction – load and resistance factor design. American Institute of Steel Construction, Chicago

    Google Scholar 

  • Alberdi R, Khandelwal K (2015) Comparison of robustness of metaheuristic algorithms for steel frame optimization. Eng Struct 102:40–60

    Article  Google Scholar 

  • Balling R (1991) Optimal steel frame design by simulated annealing. J Struct Eng 117:1780–1795

    Article  Google Scholar 

  • Bartlett FM, Dexter RJ, Graeser MD, Jelinek JJ, Schmidt BJ, Galambos TV (2003) Updating standard shape material properties database for design and reliability. Eng J AISC 40(1):2–14

    Google Scholar 

  • Beachkofski BK, Grandhi RV (2002). Improved distributed Hypercube sampling. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO

  • Bland JA (1995) Discrete-variable optimal structural design using tabu search. Struct Optim 10:87–93

    Article  Google Scholar 

  • Camp C, Bichon B, Stovall S (2005) Design of steel frames using ant colony optimization. J Struct Eng 131:369–379

    Article  Google Scholar 

  • Carroll DL (2001) FORTRAN genetic algorithm (GA) driver v1.7.1 [Online], available http://www.cuaerospace.com/carroll/ga.html

  • Chen WF, Kim SE (1997) LRFD steel design using advanced analysis. CRC Press, Boca Raton

    Google Scholar 

  • Chen WF, Lui EM (1987) Structural stability: theory and implementation. Elsevier, Amsterdam

    Google Scholar 

  • Chen WF, Lui EM (1992) Stability design of steel frames. CRC Press, Boca Raton

    Google Scholar 

  • Clarke MJ (1994) Plastic-zone analysis of frames. In: Chen WF, Toma S (eds) Advanced analysis of steel frames. CRC Press, Boca Raton

    Google Scholar 

  • Degertekin SO (2007) A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames. Struct Multidiscip Optim 34:347–359

    Article  Google Scholar 

  • Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidiscip Optim 36:393–401

    Article  Google Scholar 

  • Degertekin SO, Hayaliolu MS (2010) Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases. Struct Multidiscip Optim 42:755–768

    Article  Google Scholar 

  • Doğan E, Saka MP (2012) Optimum design of unbraced steel frames to LRFD–AISC using particle swarm optimization. Adv Eng Softw 46:27–34

    Article  Google Scholar 

  • Ellingwood BR, MacGregor JG, Galambos TV, Cornell CA (1982) Probability based load criteria: load factors and load combinations. J Struct Div ASCE 108(5):978–997

    Google Scholar 

  • Engelund S, Rackwitz R (1993) A benchmark study on importance sampling techniques in structural reliability. Struct Saf 12:255–276

    Article  Google Scholar 

  • Geem ZW, Kim JH, Logonathan GV (2001) A new Heuristic optimization algorithm: harmony search. Simulation 78:60–68

    Article  Google Scholar 

  • Hasançebi O, Çarbaş S, Doğan E, Erdal F, Saka MP (2009) Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Comput Struct 87(5–6):284–302

    Article  Google Scholar 

  • Hasançebi O, Çarbaş S, Doğan E, Erdal F, Saka MP (2010a) Comparison of non-deterministic search techniques in the optimum design of real size steel frames. Comput Struct 88(17–18):1033–1048

    Article  Google Scholar 

  • Hasançebi O, Erdal F, Saka MP (2010b) An adaptive harmony search method for structural optimization. J Struct Eng ASCE 136(4):419–431

    Article  Google Scholar 

  • Kameshki ES, Saka MP (2003) Genetic algorithm based optimum design of nonlinear steel frames with various semi-rigid connections. J Constr Steel Res 59(1):109–134

    Article  Google Scholar 

  • Kim SE, Chen WF (1996) Practical advanced analysis for braced steel frame design. J Struct Eng 122:1266–1274

    Article  Google Scholar 

  • Kripakaran P, Hall B, Gupta A (2011) A genetic algorithm for design of moment-resisting steel frame. Struct Multidiscip Optim 44:559–574

    Article  Google Scholar 

  • Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798

    Article  Google Scholar 

  • Li HS, Cao ZJ (2016) Matlab codes of subset simulation for reliability analysis and structural optimization. Struct Multidiscip Optim 54(2):391–410

    Article  MathSciNet  Google Scholar 

  • Morris MD, Mitchell TJ (1995) Exploratory designs for computer experiments. J Statist Plann Inference 43:381–402

    Article  MATH  Google Scholar 

  • Murren P, Khandelwal K (2014) Design-driven harmony search (DDHS) in steel frame optimization. Eng Struct 59:798–808

    Article  Google Scholar 

  • Orbison JG, McGuire W, Abel JF (1982) Yield surface applications in nonlinear steel frame analysis. Comput Methods Appl Mech Eng 33(1):557–573

    Article  MATH  Google Scholar 

  • Owen A (1994) Controlling correlations in Latin hypercube samples. J Am Stat Assoc 89:1517–1522

    Article  MATH  Google Scholar 

  • Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85:1579–1588

    Article  Google Scholar 

  • Pezeshk S, Camp CV, Chen D (2000) Design of nonlinear framed structures using genetic algorithms. J Struct Eng ASCE 126(3):382–388

    Article  Google Scholar 

  • Rajeev S, Krishnamoorthy C (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng 118:1233–1250

    Article  Google Scholar 

  • Saka MP, Geem ZW (2013) Mathematical and metaheuristic applications in design optimization of steel frame structures: an extensive review. Math Probl Eng 2013:1–33

    Article  MATH  Google Scholar 

  • Saka MP, Kameshki E (1998) Optimum design of unbraced rigid frames. Comput Struct 69:433–442

    Article  MATH  Google Scholar 

  • Shayanfar M, Abbasnia R, Khodam A (2014) Development of a GA-based method for reliability-based optimization of structures with discrete and continuous design variables using OpenSees and Tcl. Finite Elem Anal Des 90:61–73

    Article  Google Scholar 

  • Tada T (2007) FORTRAN particle swarm optimization (PSO) [Online], available http://www.nda.ac.jp/cc/users/tada/

  • Tang B (1998) Selecting Latin hypercubes using correlation criteria. Stat Sinica 8:965–978

    MathSciNet  MATH  Google Scholar 

  • Teh LH, Clarke MJ (1999) Plastic-zone analysis of 3D steel frames using beam elements. J Struct Eng 125:1328–1337

    Article  Google Scholar 

  • Thai HT, Kim SE (2009) Practical advanced analysis software for nonlinear inelastic analysis of space steel structures. Adv Eng Software 40:786–797

    Article  MATH  Google Scholar 

  • Truong VH, Nguyen PC, Kim SE (2017) An efficient method for optimizing space steel frames with semi-rigid joints using practical advanced analysis and the micro-genetic algorithm. J Constr Steel Res 125:416–427

    Article  Google Scholar 

  • Tsompanakis Y, Papadrakakis M (2004) Large-scale reliability-based structural optimization. Struct Multidiscip Optim 26:429–440

    Article  Google Scholar 

  • Valdebenito MA, Schuëller GI (2010) Reliability-based optimization considering design variables of discrete size. Eng Struct 32:2919–2930

    Article  MATH  Google Scholar 

  • Yang YB, Shieh MS (1990) Solution method for nonlinear problems with multiple critical points. AIAA J 28(12):2110–2116

    Article  Google Scholar 

  • Ye KQ, Li W, Sudjianto A (2000) Algorithmic construction of optimal symmertric Latin hypercube designs. J Statist Plann Inference 90:145–159

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No.2011-0030040) and (No. 2015R1A2A2A01007339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Eock Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, V.H., Kim, SE. An efficient method for reliability-based design optimization of nonlinear inelastic steel space frames. Struct Multidisc Optim 56, 331–351 (2017). https://doi.org/10.1007/s00158-017-1667-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1667-7

Keywords

Navigation