Skip to main content
Log in

Shape optimization of microstructural designs subject to local stress constraints within an XFEM-level set framework

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The present paper investigates the tailoring of bimaterial microstructures minimizing their local stress field exploiting shape optimization. The problem formulation relies on the extended finite element method (XFEM) combined with a level set representation of the geometry, to deal with complex microstructures and handle large shape modifications while working on fixed meshes. The homogenization theory, allowing extracting the behavior of periodic materials built from the repetition of a representative volume element (RVE), is applied to impose macroscopic strain fields and periodic boundary conditions to the RVE. Classical numerical homogenization techniques are adapted to the selected XFEM-level set framework. Following previous works by the authors on analytical sensitivity analysis (Noël et al. (2016)), the scope of the developed approach is extended to tackle the problem of stress objective or constraint functions. Finally, the method is illustrated by revisiting 2D classical shape optimization examples: finding the optimal shapes of single or multiple inclusions in a microstructure while minimizing its local stress field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. Comptes Rendus Mathematique 334(12):1125–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Kohn RV (1993) Optimal design of minimum compliance. Eur J Mech A Solids A 12:839–878

    MATH  Google Scholar 

  • Andreassen E, Andreasen C S (2014) How to determine composite material properties using numerical homogenization. Comput Mater Sci 83:488–495

    Article  Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1:193–202

    Article  Google Scholar 

  • Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures North-Holland

  • Bordas S, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196:3381–3399

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho PG, Reis RA, Guedes JM (2016) Convergence analysis of stress fields to homogenization predictions in optimal periodic composite design. In: Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece

  • Diaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472

  • Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. International Journal for Numerical Methods in Engineering 43:1453–1478

  • Gibiansky L, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48:461–498

    Article  MathSciNet  MATH  Google Scholar 

  • Grabovsky Y, Kohn RV (1995) Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. ii: The vigdergauz microstructure. J Mech Phys Solids 43(6):949–972

    Article  MathSciNet  MATH  Google Scholar 

  • Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198

    Article  MathSciNet  MATH  Google Scholar 

  • Guest J, Prévost JH (2006) Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43:7028–7047

    Article  MATH  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    Article  MathSciNet  MATH  Google Scholar 

  • Hassani B, Hinton E (1997) A review of homogenization and topology optimization i–homogenization theory for media with periodic structure. Comput Struct 69:707–717

    Article  MATH  Google Scholar 

  • Hassani B, Hinton E (1998) A review of homogenization and topology optimization ii–analytical and numerical solution of homogenization equations. Comput Struct 69:719–738

    Article  MATH  Google Scholar 

  • Hassani B, Hinton E (1998) A review of homogenization and topology optimization iii–topology optimization using optiMality criteria. Comput Struct 69:739–756

    Article  MATH  Google Scholar 

  • Krizek M, Neittaanmaki P (1987) On superconvergence techniques. Acta Appl Math 9:175–198

    Article  MathSciNet  MATH  Google Scholar 

  • Lipton R (2002) Design of functionally graded composite structures in the presence of stress constraints. Int J Solids Struct 39 :2575–2586

    Article  MathSciNet  MATH  Google Scholar 

  • Lipton R, Stuebner M (2006) Optimization of composite structures subject to local stress constraints. Comput Methods Appl Mech Eng 196:66–75

    Article  MathSciNet  MATH  Google Scholar 

  • Lipton R, Stuebner M (2007) Optimal design of composite structures for strength and stiffness: an inverse homogenization approach. Struct Multidiscip Optim 33:351–362

    Article  MathSciNet  MATH  Google Scholar 

  • Mlejnek HP, Schirrmacher R (1993) An engineer’s approach to optimal material distribution and shape finding. Comput Methods Appl Mech Eng 106(1):1–26

    Article  MATH  Google Scholar 

  • Moës N, Cloirec M, Cartaud PJ, Remacle J-F (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  MATH  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  • Moës N, Gravouil A, Belytschko T (2002) Non-planar 3d crack growth by the extended finite element and level sets–part i: Mechanical model. Int J Numer Methods Eng 53:2549–2568

    Article  MATH  Google Scholar 

  • Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2015) A gradient-based shape optimization scheme using an interface-enriched generalized fem. Comput Methods Appl Mech Eng 296:1–17

    Article  MathSciNet  Google Scholar 

  • Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2016) Material design using a nurbs-based shape optimization scheme. In: Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. San Diego, California

  • Noël L, Van Miegroet L, Duysinx P (2016) Analytical sensitivity analysis using the extended finite element method in shape optimization of bimaterial structures. Int J Numer Methods Eng 107(8):669–695

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Procházka PP, Válek M (2013) Shape optimization of fibers in frc. Acta Geodyn Geomater 10 (1(169)):111–120

    Article  Google Scholar 

  • Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76:545–571

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchez-Palencia E (1983) Homogenization method for the study of composite media. In: F. Verhulst (ed.) Asymptotic Analysis II, Lecture Notes in Mathematics, vol. 985, pp. 192–214. Springer Berlin Heidelberg

  • Schousboe Andreasen C, Andreassen E, Søndergaard Jensen J, Sigmund O (2014) On the realization of the bulk modulus bounds for two-phase viscoelastic composites. J Mech Phys Solids 63 :228–241

    Article  MathSciNet  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: An inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997) Design materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Suquet P (1982) Une méthode duale en homogénéisation : application aux milieux élastiques, Journal de Mé,canique Théorique et Appliquée, pp. 79–98

  • Suzuki K, Kikuchi N (1991) Homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93 :291–318

    Article  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes–a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Torquato S (2002) Random Heterogeneous Materials/Microstructure and Macroscopic Properties. Springer, New York

    Book  MATH  Google Scholar 

  • Torquato S, Gibiansky LV, Silva MJ, Gibson L (1998) Effective mechanical and transport properties of cellular solids. Int J Mech Sci 40:71–82

    Article  MATH  Google Scholar 

  • Van Miegroet L (2012) Generalized shape optimization using xfem and level set description. Ph.D. thesis, University of Liège Liège

  • Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-fem and level set description. Struct Multidiscip Optim 33(4–5):425–438

  • Vigdergauz S (1994) Two-dimensional grained composites of extreme rigidity. ASME J Appl Mech 61:390–394

    Article  MATH  Google Scholar 

  • Vigdergauz S (2001) The effective properties of a perforated elastic plate numerical optimization by genetic algorithm. Int J Solids Struct 38:8593–8616

    Article  MATH  Google Scholar 

  • Vigdergauz S (2001) Genetic algorithm perspective to identify energy optimizing inclusions in an elastic plate. Int J Solids Struct 38:6851–6867

    Article  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192 (1-2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Weihong Z, Fengwen W, Gaoming D, Shiping S (2007) Topology optimal design of material microstructures using strain energy-based method. Chin J Aeronaut 20:320–326

    Article  MATH  Google Scholar 

  • Zhou Y, Li C, Mason JJ (2005) Shape optimization of randomly oriented short fibers for bone cement reinforcements. Mater Sci Eng A 393(1–2):374–381

    Article  Google Scholar 

  • Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery a posteriori error estimates. part 1: The recovery technique. Int J Numer Methods Eng 33:1331–1364

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank E. Andreassen for the help with the homogenization implementation and for providing the code related to (Andreassen and Andreasen (2014)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Noël.

Additional information

The first author, Lise Noël, is supported by a grant from the Belgian National Fund for Scientific Research (F.R.S.-FNRS) which is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noël, L., Duysinx, P. Shape optimization of microstructural designs subject to local stress constraints within an XFEM-level set framework. Struct Multidisc Optim 55, 2323–2338 (2017). https://doi.org/10.1007/s00158-016-1642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1642-8

Keywords

Navigation