Skip to main content
Log in

Optimal strengthening of no–tension structures with externally bonded reinforcing layers or ties

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

An innovative approach is proposed to define the optimal distribution of a prescribed amount of reinforcement to be externally bonded to 2D no-tension structural elements, with the aim of maximizing the overall stiffness of the strengthened element. Only tensile stresses are allowed in the reinforcing layers. An algorithm based on Topology Optimization is employed to simultaneously enforce negativity of the principal stresses in the original body, and positivity of the stress in the reinforcement. A few numerical simulations are presented to assess the capabilities of the proposed procedure in defining the optimal reinforcement layouts for laterally loaded walls and arches. In the case of curved elements, suitable fasteners have to be employed to ensure bonding of the strengthening layer at the intrados. Fiber-reinforcement is found to spontaneously arise where cracks would occur in the unreinforced element. The proposed formulation can also be employed to define the optimal location of reinforcing ties for arches and barrel vaults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Amir O, Sigmund O (2013) Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidisc Optim 47(2):157–174

    Article  MathSciNet  MATH  Google Scholar 

  • Ananiev S (2005) On equivalence between optiMality criteria and projected gradient methods with application to topology optimization problem. Multibody System Dynamics 13(1):25–38

    Article  MathSciNet  MATH  Google Scholar 

  • Angelillo M, Cardamone L, Fortunato A (2010) A numerical model for masonry-like structures. J Mech Mater Struct 5(4):583–615

    Article  Google Scholar 

  • Angelillo M, Babilio E, Cardamone L, Fortunato A, Lippiello M (2014) Some remarks on the retrofitting of masonry structures with composite materials. Compos Part B Eng 61:11–16

    Article  Google Scholar 

  • Baratta A, Corbi I (2014) Topology optimization for reinforcement of no-tension structures. Acta Mech 225:663–678

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogeneization method. Comp Meth Appl Mech Eng 71:197–224

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization - theory methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Borri A, Castori G, Corradi M (2011) Intrados strengthening of brick masonry arches with composite materials. Compos Part B Eng 42(5):1164–1172

    Article  Google Scholar 

  • Bruggi M (2014) Finite element analysis of no-tension structures as a topology optimization problem. Struct Multidisc Optim 50(6):957–973

    Article  MathSciNet  Google Scholar 

  • Bruggi M, Milani G, Taliercio A (2013) Design of the optimal fiber-reinforcement for masonry structures via topology optimization. Int J Solids Struct 50(13):2087–2106

    Article  Google Scholar 

  • Bruggi M, Taliercio A (2013) Topology optimization of the fiber-reinforcement retrofitting existing structures. Int J Solids Struct 50(1):121–136

    Article  Google Scholar 

  • Bruggi M, Taliercio A (2015a) Optimal strengthening of concrete plates with unidirectional fiber-reinforcing layers. Int J Solids Struct 67-68:311–325

    Article  Google Scholar 

  • Bruggi M, Taliercio A (2015b) Analysis of no-tension structures under monotonic loading through an energy-based method. Comput Struct 159:14–25

    Article  Google Scholar 

  • Bruyneel M, Duysinx P (2005) Note on topology optimization of continuum structures including self-weight. Struct Multidisc Optim 29(4):245–256

    Article  Google Scholar 

  • Cai K (2011) A simple approach to find optimal topology of a continuum with tension-only or compression-only material. Struct Multidisc Optim 43:827–835

    Article  Google Scholar 

  • Cai K, Cao J, Shi J, Liu L, Qin QH (2016) Optimal layout of multiple bi-modulus materials. Struct Multidisc Optim 53:801–811

    Article  MathSciNet  Google Scholar 

  • Caporale A, Luciano R (2012) Limit analysis of masonry arches with finite compressive strength and externally bonded reinforcement. Compos Part B Eng 43(8):3131–3145

    Article  Google Scholar 

  • Capozucca R (2010) Experimental FRP/SRP-historic masonry delamination. Compos Struct 92(4):891–903

    Article  Google Scholar 

  • Capozucca R (2011) Experimental analysis of historic masonry walls reinforced by CFRP under in-plane cyclic loading. Compos Struct 94(1):277–289

    Article  Google Scholar 

  • Cordebois JP, Sidoroff F (1982) Anisotropic damage in elasticity and plasticity (in French). J Méc Th Appl numéro spécial:45–60

  • Cunha J, Chaves LP (2014) The use of topology optimization in disposing carbon fiber reinforcement for concrete structures. Struct Multidisc Optim 49(6):1009–1023

    Article  MathSciNet  Google Scholar 

  • Cuomo M, Ventura G (2000) Complementary energy formulation of no tension masonry-like solids. Comput Methods Appl Mech Eng 189(1):313–339

    Article  MathSciNet  MATH  Google Scholar 

  • Del Piero G (1989) Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24(3):150–162

    Article  MathSciNet  MATH  Google Scholar 

  • Du Z, Guo X (2014) Variational principles and the related bounding theorems for bi-modulus materials. J Mech Phys Solids 73:183–211

    Article  MathSciNet  MATH  Google Scholar 

  • Du Z, Zhang Y (2016) A new computational framework for materials with different mechanical responses in tension and compression and its applications. Int J Solids Struct. doi:10.1016/j.ijsolstr.2016.07.009

  • EN 1992-1-1 (2004) Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings

  • Foraboschi P (2001) Strength assessment of masonry arch retrofitted using composite reinforcements. Masonry Int 15(1):17–25

    Google Scholar 

  • Gaynor AL, Guest JK, Moen CD (2013) Reinforced concrete force visualization and design using bilinear truss-continuum topology optimization. J Struct Eng 139(4):607–618

    Article  Google Scholar 

  • Giaquinta M, Giusti E (1985) Researches on the equilibrium of masonry structures. Arch Ration Mech An 88:359–392

    Article  MathSciNet  MATH  Google Scholar 

  • Grande E, Milani G, Sacco E (2008) Modelling and analysis of FRP-strengthened masonry panels. Eng Struct 30(7):1842–1860

    Article  Google Scholar 

  • Gunes O, Lau D, Tuakta C, Büyüköztürk O (2013) Ductility of FRP-concrete systems: Investigations at different length scales. Constr Build Mater 49:915–925

    Article  Google Scholar 

  • Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Engrg 200(47):3439–3452

    Article  MathSciNet  MATH  Google Scholar 

  • Heyman J (1966) The stone skeleton. Int J Solids Struct 2(2):249–256

    Article  Google Scholar 

  • Jeong SH, Park SH, Choi D-H, Yoon GH (2012) Topology optimization considering static failure theories for ductile and brittle materials. Comput Struct 110-111:116–132

    Article  Google Scholar 

  • Kanno Y (2011) Nonsmooth Mechanics and Convex Optimization. CRC Press, Taylor & Francis Group Boca Raton. FL, USA

    Book  Google Scholar 

  • Krevaikas TD, Triantafillou TC (2005) Computer-aided strengthening of masonry walls using fibre-reinforced polymer strips. Mater Struct 38(275):93–98

    Article  Google Scholar 

  • Li B, Qian K, Tran CTN (2013) Retrofitting earthquake-damaged RC structural walls with openings by externally bonded FRP strips and sheets. J Compos Constr 17(2):259–270

    Article  Google Scholar 

  • Luo Y, Wang MY, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Engrg 254:31–41

    Article  MathSciNet  MATH  Google Scholar 

  • Mosallam AS (2016) Structural evaluation and design procedure for wood beams repaired and retrofitted with FRP laminates and honeycomb sandwich panels. Composites Part B 87(2016):196–213

    Article  Google Scholar 

  • Norris T, Saadatmanesh H, Eshani MR (1997) Shear and flexural strengthening of r/c beams with carbon fibers sheets. ASCE-j Struct Eng 123(7):903–911

    Article  Google Scholar 

  • Shi J, Cao J, Cai K, Wang Z, Qin QH (2016) Layout optimization for multi-bi-modulus materials system under multiple load cases. Eng Comput 32:745–753

    Article  Google Scholar 

  • Shrive NG (2006) The use of fibre reinforced polymers to improve seismic resistance of masonry. Constr Build Mater 20(4):269–277

    Article  Google Scholar 

  • Svanberg K (1987) Method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Singh V, Bansal PP, Kumar M, Kaushik SK (2014) Experimental studies on strength and ductility of CFRP jacketed reinforced concrete beam-column joints. Constr Build Mater 55:194–201

    Article  Google Scholar 

  • Walker RA, Karbhari VM (2007) Durability based design of FRP jackets for seismic retrofit. Compos Struct 80:553–568

    Article  Google Scholar 

  • Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 9091:55–64

    Article  Google Scholar 

  • Zhang WS, Guo X, Wang MY, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Meth Engng 93(9):942–959

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bruggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruggi, M., Taliercio, A. Optimal strengthening of no–tension structures with externally bonded reinforcing layers or ties. Struct Multidisc Optim 55, 1831–1846 (2017). https://doi.org/10.1007/s00158-016-1625-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1625-9

Keywords

Navigation