Skip to main content
Log in

Shape and topology optimization based on the convected level set method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The aim of this research is to construct a shape optimization method based on the convected level set method, in which the level set function is defined as a truncated smooth function obtained by using a sinus filter based on a hyperbolic tangent function. The local property of the hyperbolic tangent function dramatically reduces the generation of red the error between the specified profile of the hyperbolic tangent function and the level set function that is updated using a time evolution equation. In addition, the small size of the error facilitates the use of convective reinitialization, whose basic idea is that the reinitialization is embedded in the time evolution equation, whereas such treatment is typically conducted in a separate calculation in conventional level set methods. The convected level set method can completely avoid the need for additional calculations when performing reinitialization. The validity and effectiveness of our presented method are tested with a mean compliance minimization problem and a problem for the design of a compliant mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Engrg Anal Bound Elem 32(11):909–918

    Article  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, De Gournay F, Jouve F, Toader A (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59–80

    MathSciNet  MATH  Google Scholar 

  • Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evolution method. Comput Methods Appl Mech Eng 282:22–53

    Article  MathSciNet  Google Scholar 

  • Allen S M, Cahn J W (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27(6):1085–1095

    Article  Google Scholar 

  • Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Cahn J W, Hilliard J E (1958) Free energy of a nonuniform system. I. Interfacial free energy. Chin J Chem Phys 28(2):258–267

    Google Scholar 

  • Castro-Diaz M, Hecht F, Mohammadi B, Pironneau O (1997) Anisotropic unstructured mesh adaption for flow simulations. Int J Numer Methods Fluids 25(4):475–491

    Article  MathSciNet  MATH  Google Scholar 

  • Challis V J, Guest J K (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Engng 79(10):1284– 1308

    Article  MathSciNet  MATH  Google Scholar 

  • Coupez T, Silva L, Hachem E (2015) Implicit boundary and adaptive anisotropic meshing. In: Perotto S, Formaggia L (eds) New challenges in grid generation and adaptivity for scientific computing, SEMA SIMAI springer series, vol 5, springer international publishing, pp 1–18

  • Desjardins O, Moureau V, Pitsch H (2008) An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J Comput Phys 227(18):8395–8416

    Article  MathSciNet  MATH  Google Scholar 

  • Duan X B, Ma Y C, Zhang R (2008) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222(2):487–499

    Article  MathSciNet  MATH  Google Scholar 

  • Eschenauer H A, Kobelev V V, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optimiz 8(1):42–51

    Article  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081,009

    Article  Google Scholar 

  • Hecht F (2012) New development in freefem++. J Numer Math 20(3-4):251–266

    Article  MathSciNet  MATH  Google Scholar 

  • Khalil H, Bila S, Aubourg M, Baillargeat D, Verdeyme S, Jouve F, Delage C, Chartier T (2010) Shape optimized design of microwave dielectric resonators by level-set and topology gradient methods. Int J RF Microw Comput-Aided Eng 20(1):33–41

    Google Scholar 

  • Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Methods Engng 76(6):862–892

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Z, Tong L, Luo J, Wei P, Wang M Y (2009) Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J Comput Phys 228(7):2643–2659

    Article  MathSciNet  MATH  Google Scholar 

  • Nishiwaki S, Frecker M I, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Methods Engng 42:535–559

    Article  MathSciNet  MATH  Google Scholar 

  • Nishiwaki S, Min S, Yoo J, Kikuchi N (2001) Optimal structural design considering flexibility. Comput Methods Appl Mech Eng 190(34):4457–4504

    Article  MathSciNet  Google Scholar 

  • Olsson E, Kreiss G (2005) A conservative level set method for two phase flow. J Comput Phys 210(1):225–246

    Article  MathSciNet  MATH  Google Scholar 

  • Olsson E, Kreiss G, Zahedi S (2007) A conservative level set method for two phase flow II. J Comput Phys 225(1):785– 807

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Sethian J A (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Park K S, Youn S K (2008) Topology optimization of shell structures using adaptive inner-front (AIF) level set method. Struct Multidiscip Optim 36(1):43–58

    Article  MathSciNet  MATH  Google Scholar 

  • Pironneau O (1982) On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer Math 38(3):309–332

    Article  MathSciNet  MATH  Google Scholar 

  • Pironneau O (1984) Optimal shape design for elliptic systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Sethian J A, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Based Des Struct Mechines 25(4):493–524

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolowski J, Zolesio J P (1992) Introduction to shape optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  • Strain J (1999) Semi-lagrangian methods for level set equations. J Comput Phys 151(2):498–533

    Article  MathSciNet  MATH  Google Scholar 

  • Van Dijk N P, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidisc Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Ville L, Silva L, Coupez T (2011) Convected level set method for the numerical simulation of fluid buckling. Int J Numer Methods Fluids 66(3):324–344

    Article  MATH  Google Scholar 

  • Wang M Y, Wang X (2004) Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M Y, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Wang M Y (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Engng 65(12):2060–2090

    Article  MathSciNet  MATH  Google Scholar 

  • Wei P, Wang M Y (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Engng 78(4):379–402

    Article  MathSciNet  MATH  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45-48):2876–2891

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou S, Li W, Sun G, Li Q (2010) A level-set procedure for the design of electromagnetic metamaterials. Opt Express 18(7):6693–6702

    Article  Google Scholar 

  • Zhu B, Zhang X, Fatikow S (2015) Structural topology and shape optimization using a level set method with distance-suppression scheme. Comput Methods Appl Mech Eng 283:1214–1239

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Prof. Frédéric Hecht, Prof. François Jouve, and Prof. Thierry Coupez for their helpful discussion of this work. The first author was able to conduct overseas research in France supported by JSPS KAKENHI, Grant-in-Aid for JSPS Fellows, 14J02008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Yaji.

Appendix A Update scheme for the level set function based on the method of characteristics

Appendix A Update scheme for the level set function based on the method of characteristics

Here, we discuss the basic idea of the method of characteristics and its application to solve the time evolution equation in (20).

For this brief explanation, we first deal with the simple advection equation (15). Consider a vector field X that satisfies the following ordinary differential equation,

$$ \frac{\partial\mathbf{X}(t)}{\partial t}=\mathbf{V}(\mathbf{X}(t),t)\ $$
(A.1)

The time derivative of the composite function ψX(t) = ψ(X(t),t) is obtained as follows:

$$\begin{array}{@{}rcl@{}} \frac{\text{d}\psi(\mathbf{X}(t),t)}{\text{d} t}&=&\frac{\partial\psi(\mathbf{X}(t),t)}{\partial t}+\mathbf{V}\cdot\nabla\psi(\mathbf{X}(t),t) \\ &=&\frac{\text{D}\psi(\mathbf{X}(t),t)}{\text{D} t}, \end{array} $$
(A.2)

where Dψ/Dt represents the material derivative of ψ and corresponds to the left-hand side of (15). Based on the backward Euler scheme and using a time step Δt, this can be discretized as

$$\begin{array}{@{}rcl@{}} \frac{\text{D}\psi(\mathbf{X}(t),t)}{\text{D} t}&=&\frac{\psi(\mathbf{X}(t),t)-\psi(\mathbf{X}(t-\Delta t),t-\Delta t)}{\Delta t}\\ &&+O(\Delta t). \end{array} $$
(A.3)

We now assume that the discrete time is defined as 0<t 1<⋯<t n <⋯<t N with t n = nΔt, and consider the following initial value problem:

$$ \left\{\begin{array}{l} \cfrac{\partial\mathbf{X}(t)}{\partial t}=\mathbf{V}(\mathbf{X}(t),t)\ \text{ for }t\in(t_{n-1},t_{n}) \\ \mathbf{X}(t_{n})=\mathbf{x}. \end{array}\right. $$
(A.4)

Using an approximate solution, X n(x): = xV(x,t n t, we obtain the following relation:

$$ \mathbf{X}(t_{n-1})-\mathbf{X}^{n}(\mathbf{x})=O(\Delta t^{2}). $$
(A.5)

Consequently, (A.3) can be reformulated as

$$ \frac{\text{D}\psi(\mathbf{x},t_{n})}{\text{D} t}=\frac{\psi(\mathbf{x},t_{n})-\psi(\mathbf{X}^{n}(\mathbf{x}),t_{n-1})}{\Delta t}+O(\Delta t). $$
(A.6)

Using a test function \(\tilde {\psi }\), the notation ψ n: = ψ(⋅,t n ), and the scalar product (⋅,⋅) in L 2(D), the material derivative of ψ n can be approximated as follows:

$$ \left( \frac{\text{D}\psi^{n}}{\text{D} t},\tilde{\psi} \right)\approx \left( \frac{\psi^{n}-\psi^{n-1}\circ\mathbf{X}^{n}}{\Delta t},\tilde{\psi}\right), $$
(A.7)

where ψ and \(\tilde {\psi }\) are chosen from a finite element space. Due to the definition of V = v n with n=∇ψ/|∇ψ|, it should be noted that we need to assume that V(x,t n )≈V(ψ n−1), to avoid the nonlinearity in (A.7).

Equation (A.7) can be only used for solving (15), so it must be expanded in order to solve (20) in which the convection velocity is defined as (Vλsign(ψ)n) instead of only V as it is in (15). Considering the source term λsign(ψ)G(ψ), (20) can be approximated as

$$\begin{array}{@{}rcl@{}} &&\left( \frac{\text{D}\psi^{n}}{\text{D} t}-\lambda\text{sign}(\psi^{n})G(\psi^{n}),\tilde{\psi} \right)\\ &&\quad\approx \left( \frac{\psi^{n}-\psi^{n-1}\circ\mathbf{X}^{n}}{\Delta t}-\lambda\text{sign}(\psi^{n-1})G(\psi^{n-1}),\tilde{\psi}\right),\\ \end{array} $$
(A.8)

where X n = x−(V(x,t n )−λsign(ψ n−1)nt. Note that the use of sign(ψ n−1) and G(ψ n−1) in the right-hand side of (A.8) is necessary to avoid the nonlinearity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaji, K., Otomori, M., Yamada, T. et al. Shape and topology optimization based on the convected level set method. Struct Multidisc Optim 54, 659–672 (2016). https://doi.org/10.1007/s00158-016-1444-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1444-z

Keywords

Navigation