Skip to main content
Log in

Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The p-norm often used in stress constrained topology optimisation supposedly mimics a delta function and it is thus characterised by a small length scale and ideally one would also prefer to have the solid-void transition occur over a small length scale, since the material in this transition does not have a clear physical interpretation. We propose to resolve these small length scales using anisotropic mesh adaptation. We use the method of moving asymptotes with interpolation of sensitivities, asymptotes and design variables between iterations. We demonstrate this combination for the portal and L-bracket problems with p=10, and we are able to investigate mesh dependence. Finally, we suggest relaxing the L-bracket problem statement by introducing a rounded corner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Preliminary results related to this work was presented at FEniCS 14 in Paris, June 2014, at the International Meshing Roundtable 23 in London, October 2014 and at the eleventh World Congress of Structural and Multidisciplinary Optimisation in Sydney, June 2015.

  2. except for the one case where an optimisation of the rounded L-bracket problem fails to recover from an infeasible design.

  3. Using an Intel(R) Core(TM) i7 870 @ 2.93GHz.

References

  • Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems. Struct Multidiscip Optim 35(2):175–180

    Article  MathSciNet  MATH  Google Scholar 

  • Aage N, Andreassen E, Lazarov BS (2014) Topology optimization using petsc. Struct Multidiscip Optim

  • Adrien L (2014) Metric-orthogonal anisotropic mesh generation. Procedia Eng 82:403–415

    Article  Google Scholar 

  • Agouzal A, Lipnikov K, Vassilevski Y (1999) Adaptive generation of quasi-optimal tetrahedral meshes. East West J Numer Math 7(4):223–244

    MathSciNet  MATH  Google Scholar 

  • Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von mises stress constraints. Struct Multidiscip Optim 41(3):407–420

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3d using parallel computing. Comput Methods Appl Mech Eng 190(46):6201–6229

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Sun P, Xu J (2007) Optimal anisotropic meshes for minimizing interpolation errors in l p-norm. Math Comput 76(257):179–204

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng GD, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13(4):258–266

    Article  Google Scholar 

  • Christiansen AN, Bærentzen JA, Nobel-Jørgensen M, Aage N, Sigmund O (2015) Combined shape and topology optimization of 3d structures. Comput Graph 46:25–35

    Article  Google Scholar 

  • Dompierre J, Vallet M-G, Bourgault Y, Fortin M, Habashi WG (2002) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent cfd. part iii. unstructured meshes. Int J Numer Methods Fluids 39(8):675–702

    Article  MathSciNet  MATH  Google Scholar 

  • Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: Proceedings of the 7th AIAA/USAF/NASAISSMO Symp on Multidisciplinary Analysis and Optimization, vol 1, pp 1501–1509

  • Farrell PE (2009) Galerkin projection of discrete fields via supermesh construction. PhD thesis, Imperial College London

  • Farrell PE, Ham DA, Funke SW, Rognes ME (2013) Automated derivation of the adjoint of high-level transient finite element programs. SIAM J Sci Comput 35(4):C369–C393

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47):3439–3452

    Article  MathSciNet  MATH  Google Scholar 

  • Habashi WG, Dompierre J, Bourgault Y, Ait-Ali-Yahia D, Fortin M, Vallet M-G (2000) Anisotropic mesh adaptation: Towards user-independent, mesh-independent and solver-independent cfd. part i: General principles. Int J Numer Methods Fluids 32(6):725–44

    Article  MathSciNet  MATH  Google Scholar 

  • Holmberg E, Bo T, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen KE, Gorman G (2015) Details of tetrahedral anisotropic mesh adaptation. Comput Phys Commun

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781

    Article  MathSciNet  MATH  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620

    Article  Google Scholar 

  • Alnaes M., Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FEniCS Project Version 1.5. Arch Numer Softw 3(100)

  • Loseille A, Alauzet F (2011) Continuous mesh framework part i: well-posed continuous interpolation error. SIAM J Numer Anal 49(1):38–60

    Article  MathSciNet  MATH  Google Scholar 

  • Loseille A, Dervieux A, Alauzet F (2010) Fully anisotropic goal-oriented mesh adaptation for 3d steady euler equations. J Comput Phys 229(8):2866–2897

    Article  MathSciNet  MATH  Google Scholar 

  • Pain CC, Umpleby AP, De Oliveira CRE, Goddard AJH (2001) Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput Methods Appl Mech Eng 190 (29):3771–3796

    Article  MATH  Google Scholar 

  • Qi X, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64

    Google Scholar 

  • Rokos G, Gorman GJ, Southern J, Kelly PHJ (2013) A thread-parallel algorithm for anisotropic mesh adaptation. arXiv:1308.2480

  • Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim 46(4):471–475

    Article  MathSciNet  MATH  Google Scholar 

  • Suresh K, Takalloozadeh M (2013) Stress-constrained topology optimization: a topological level-set approach. Struct Multidiscip Optim 48(2):295–309

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotesa new method for structural optimization. Int J Numer Methods Eng 24(2):359– 373

    Article  MathSciNet  MATH  Google Scholar 

  • Wallin M, Ristinmaa M, Askfelt H (2012) Optimal topologies derived from a phase-field method. Struct Multidiscip Optim 45(2):171–183

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Zhang WS, Guo X, Wang MY, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Methods Eng 93(9):942–59

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Villum Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Ejlebjerg Jensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, K.E. Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm. Struct Multidisc Optim 54, 831–841 (2016). https://doi.org/10.1007/s00158-016-1439-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1439-9

Keywords

Navigation