Skip to main content
Log in

Wellfoundedness proof with the maximal distinguished set

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In Arai (An ordinal analysis of a single stable ordinal, submitted) it is shown that an ordinal \(\sup _{N<\omega }\psi _{\varOmega _{1}}(\varepsilon _{\varOmega _{{\mathbb {S}}+N}+1})\) is an upper bound for the proof-theoretic ordinal of a set theory \(\mathsf {KP}\ell ^{r}+(M\prec _{\Sigma _{1}}V)\). In this paper we show that a second order arithmetic \(\Sigma ^{1-}_{2}{\mathrm {-CA}}+\Pi ^{1}_{1}{\mathrm {-CA}}_{0}\) proves the wellfoundedness up to \(\psi _{\varOmega _{1}}(\varepsilon _{\varOmega _{{\mathbb {S}}+N+1}})\) for each N. It is easy to interpret \(\Sigma ^{1-}_{2}{\mathrm {-CA}}+\Pi ^{1}_{1}{\mathrm {-CA}}_{0}\) in \(\mathsf {KP}\ell ^{r}+(M\prec _{\Sigma _{1}}V)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This means that no second order free variable occurs in A. First order parameters may occur in it.

References

  1. Arai, T.: Ordinal diagrams for recursively Mahlo universes. Archiv. Math. Logic 39, 353–391 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arai, T.: Ordinal diagrams for \(\Pi _{3}\)-reflection. J. Symb. Logic 65, 1375–1394 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arai, T.: Wellfoundedness proofs by means of non-monotonic inductive definitions I: \(\Pi ^{0}_{2}\)-operators. J. Symb. Logic 69, 830–850 (2004)

    Article  MATH  Google Scholar 

  4. Arai, T.: Wellfoundedness proofs by means of non-monotonic inductive definitions II: first order operators. Ann. Pure Appl. Logic 162, 107–143 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arai, T.: A simplified ordinal analysis of first-order reflection. J. Symb. Logic 85, 1163–1185 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arai, T.: Well-foundedness proof for first order reflection, arXiv:1506.05280

  7. Arai, T.: An ordinal analysis of a single stable ordinal, submitted

  8. Barwise, J.: Admissible Sets and Structures. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  9. Buchholz, W.: Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In: Diller, J., Müller, G. H. (eds.) Proof Theory Symposion Kiel 1974, Lect. Notes Math. vol. 500, pp. 4-25, Springer (1975)

  10. Jäger, G.: Theories for admissible sets, A unifying approach to proof theory, Studies in Proof Theory Lecture Notes 2. Bibliopolis, Napoli (1986)

  11. Rathjen, M.: An ordinal analysis of parameter free \(\Pi ^{1}_{2}\)-comprehension. Arch. Math. Logic 44, 263–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Simpson, S.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyasu Arai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, T. Wellfoundedness proof with the maximal distinguished set. Arch. Math. Logic 62, 333–357 (2023). https://doi.org/10.1007/s00153-022-00840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-022-00840-8

Keywords

Mathematics Subject Classification

Navigation