Skip to main content
Log in

The covering number of the strong measure zero ideal can be above almost everything else

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show that certain type of tree forcings, including Sacks forcing, increases the covering of the strong measure zero ideal \({{\mathcal {S}}}{{\mathcal {N}}}\). As a consequence, in Sacks model, such covering number is equal to the size of the continuum, which indicates that this covering number is consistently larger than any other classical cardinal invariant of the continuum. Even more, Sacks forcing can be used to force that \(\mathrm {non}({{\mathcal {S}}}{{\mathcal {N}}})<\mathrm {cov}({{\mathcal {S}}}{{\mathcal {N}}})<\mathrm {cof}({{\mathcal {S}}}{{\mathcal {N}}})\), which is the first consistency result where more than two cardinal invariants associated with \({{\mathcal {S}}}{{\mathcal {N}}}\) are pairwise different. Another consequence is that \({{\mathcal {S}}}{{\mathcal {N}}}\subseteq s^0\) in ZFC where \(s^0\) denotes Marczewski’s ideal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Obvious lower bounds of \(\mathrm{cof}({{\mathcal {S}}}{{\mathcal {N}}})\) are \(\mathrm{cov}({\mathcal {N}})\) and \(\mathrm{cov}({\mathcal {M}})\) because of (SN2) and (SN3), respectively.

  2. Also \(\mathrm{non}({{\mathcal {S}}}{{\mathcal {N}}})\le \mathrm{non}(s^0)\), but \(\mathrm{non}(s^0)={\mathfrak {c}}\) because \([2^\omega ]^{<{\mathfrak {c}}}\subseteq s^0\).

  3. In Yorioka’s original result it is further assumed that \({\mathfrak {d}}=\mathrm{cov}({\mathcal {M}})=\kappa \), but this redundant because \(\mathrm {minadd}\le \mathrm{add}({\mathcal {M}})\le \mathrm{cov}({\mathcal {M}})\le {\mathfrak {d}}\le \mathrm{cof}({\mathcal {M}})\le \mathrm {supcof}\), as pointed out in the paragraph preceding the theorem.

  4. A poset \({\mathbb {P}}\) is strongly \(\omega ^\omega \)-bounding if for any \(p\in {\mathbb {P}}\) and any \({\mathbb {P}}\)-name \({\dot{x}}\) of a function from \(\omega \) into the ground model, there are a function f from \(\omega \) into the finite sets and some \(q\le p\) that forces \({\dot{x}}(n)\in f(n)\) for any \(n<\omega \).

References

  1. Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A K Peters, Wellesley (1995)

    Book  Google Scholar 

  2. Bartoszyński, T., Shelah, S.: Strongly meager and strong measure zero sets. Arch. Math. Logic 41(3), 245–250 (2002). https://doi.org/10.1007/s001530000068

    Article  MathSciNet  MATH  Google Scholar 

  3. Blass, A.: Combinatorial cardinal characteristics of the continuum. In: Handbook of Set Theory, vols. 1, 2, 3. Springer, Dordrecht, pp. 395–489 (2010). https://doi.org/10.1007/978-1-4020-5764-9_7

  4. Brendle, J.: Larger cardinals in Cichoń’s diagram. J. Symb. Log. 56(3), 795–810 (1991). https://doi.org/10.2307/2275049

  5. Brendle, J., Cardona, M.A., Mejía, D.A.: Filter–linkedness and its effect on preservation of cardinal characteristics. Ann. Pure Appl. Log. 171(1), 102856 (2021). https://doi.org/10.1016/j.apal.2020.102856. arXiv:1809.05004

  6. Cardona, M.A.: On cardinal characteristics associated with the strong measure zero ideal. Fundam. Math. (2021). arXiv:2003.07066 (accepted)

  7. Cardona, M.A., Mejía, D.A.: On cardinal characteristics of Yorioka ideals. Math. Log. Q. 65(2), 170–199 (2019). https://doi.org/10.1002/malq.201800034. https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.201800034

  8. Carlson, T.J.: Strong measure zero and strongly meager sets. Proc. Am. Math. Soc. 118(2), 577–586 (1993). https://doi.org/10.2307/2160341

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldstern, M.: Tools for your forcing construction. In: Set Theory of the Reals (Ramat Gan, 1991).Israel Math. Conf. Proc., vol. 6. Bar-Ilan Univ., Ramat Gan, pp. 305–360 (1993)

  10. Goldstern, M., Judah, H., Shelah, S.: Strong measure zero sets without Cohen reals. J. Symb. Log. 58(4), 1323–1341 (1993). https://doi.org/10.2307/2275146

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldstern, M., Shelah, S.: Many simple cardinal invariants. Arch. Math. Logic 32(3), 203–221 (1993). https://doi.org/10.1007/BF01375552.. arXiv:math/9205208

    Article  MathSciNet  MATH  Google Scholar 

  12. Judah, H., Miller, A.W., Shelah, S.: Sacks forcing, Laver forcing, and Martin’s axiom. Arch. Math. Log. 31(3), 145–161 (1992). https://doi.org/10.1007/BF01269943

  13. Judah, H., Shelah, S.: The Kunen–Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing). J. Symb. Log. 55(3), 909–927 (1990). https://doi.org/10.2307/2274464

    Article  MathSciNet  MATH  Google Scholar 

  14. Klausner, L.D., Mejía, D.A.: Many different uniformity numbers of Yorioka ideals. Arch. Math. Logic (2021). arXiv:1805.11005 (accepted)

  15. Laver, R.: On the consistency of Borel’s conjecture. Acta Math. 137(3–4), 151–169 (1976)

  16. Marczewski, E.: Sur une classe de fonctions de W. Sierpiński et la classe correspondante d’ensembles. Fund. Math. 24, 17–34 (1935)

  17. Miller, A.W.: Some properties of measure and category. Trans. Am. Math. Soc. 266(1), 93–114 (1981). https://doi.org/10.2307/1998389

    Article  MathSciNet  MATH  Google Scholar 

  18. Montoya, D.C.: Some cardinal invariants of the generalized Baire spaces. PhD thesis, University of Vienna (2017)

  19. Osuga, N.: The cardinal invariants of certain ideals related to the strong measure zero ideal. Kyōto Daigaku Sūrikaiseki Kenkyūsho Kōkyūroku 1619, 83–90 (2008)

  20. Pawlikowski, J.: Finite support iteration and strong measure zero sets. J. Symb. Log. 55(2), 674–677 (1990). https://doi.org/10.2307/2274657

    Article  MathSciNet  MATH  Google Scholar 

  21. Rosłanowski, A., Shelah, S.: Norms on possibilities. I. Forcing with trees and creatures. Mem. Am. Math. Soc. 141(671), xii+167 (1999). https://doi.org/10.1090/memo/0671

    Article  MathSciNet  MATH  Google Scholar 

  22. Shelah, S.: Proper and Improper Forcing, vol. 5. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  23. Yorioka, T.: The cofinality of the strong measure zero ideal. J. Symb. Log. 67(4), 1373–1384 (2002). https://doi.org/10.2178/jsl/1190150290

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego A. Mejía.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Austrian Science Fund (FWF) P30666 and the DOC Fellowship of the Austrian Academy of Sciences at the Institute of Discrete Mathematics and Geometry, TU Wien (first author), the Grant-in-Aid for Early Career Scientists 18K13448, Japan Society for the Promotion of Science (second author), and by the Grant No. IN202010, Dirección de Tecnología e Investigación, Institución Universitaria Pascual Bravo (second and third authors)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardona, M.A., Mejía, D.A. & Rivera-Madrid, I.E. The covering number of the strong measure zero ideal can be above almost everything else. Arch. Math. Logic 61, 599–610 (2022). https://doi.org/10.1007/s00153-021-00808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-021-00808-0

Keywords

Mathematics Subject Classification

Navigation