Skip to main content
Log in

Induction rules in bounded arithmetic

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We study variants of Buss’s theories of bounded arithmetic axiomatized by induction schemes disallowing the use of parameters, and closely related induction inference rules. We put particular emphasis on \(\hat{\varPi }^{b}_i\) induction schemes, which were so far neglected in the literature. We present inclusions and conservation results between the systems (including a witnessing theorem for \(T^i_2\) and \(S^i_2\) of a new form), results on numbers of instances of the axioms or rules, connections to reflection principles for quantified propositional calculi, and separations between the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Warning: the proof of Theorem 27, which effectively claims that \(\hat{\varSigma }^{b}_i\hbox {-} (P)IND^- \equiv \hat{\varSigma }^{b}_i\hbox {-} (P)IND^R \), is incorrect.

  2. Their setup includes modular counting gates, but most of the results work also in the usual setup.

  3. In fact, weaker assumptions suffice: it is enough if \({\mathbb {Q}}\), \(\omega \sqcup 1\), and \(\omega ^*\sqcup 1\) do not embed in P, where \(\sqcup \) denotes disjoint union of posets.

  4. The one possible exception is that we used a couple of times the fact that every bounded sentence is provable or refutable in the base theory. This is not literally true in the relativized setting, but it may be replaced by the weaker property that every bounded sentence is equivalent to a Boolean combination of sentences of the form \(\alpha (k)\) for standard constants k.

References

  1. Adamowicz, Z., Bigorajska, T.: Functions provably total in \(I^-\varSigma _1\). Fundamenta Mathematicae 132, 189–194 (1989)

    Article  MathSciNet  Google Scholar 

  2. Aehlig, K., Cook, S., Nguyen, P.: Relativizing small complexity classes and their theories. Comput. Complex. 25(1), 177–215 (2016)

    Article  MathSciNet  Google Scholar 

  3. Beklemishev, L.D.: Induction rules, reflection principles, and provably recursive functions. Ann. Pure Appl. Log. 85(3), 193–242 (1997)

    Article  MathSciNet  Google Scholar 

  4. Beklemishev, L.D.: Parameter free induction and provably total computable functions. Theor. Comput. Sci. 224, 13–33 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bigorajska, T.: On \({\varSigma }_{1}\)-definable functions provably total in \({I\varPi }_{1}^{-}\). Math. Log. Q. 41, 135–137 (1995)

  6. Bloch, S.A.: Divide and conquer in parallel complexity and proof theory. Ph.D. thesis, University of California, San Diego (1992)

  7. Buss, S.R.: Bounded Arithmetic. Bibliopolis, Naples (1986). Revision of 1985 Princeton University Ph.D. thesis

  8. Buss, S.R.: Relating the bounded arithmetic and polynomial time hierarchies. Ann. Pure Appl. Log. 75(1–2), 67–77 (1995)

    Article  MathSciNet  Google Scholar 

  9. Buss, S.R., Kołodziejczyk, L.A., Zdanowski, K.: Collapsing modular counting in bounded arithmetic and constant depth propositional proofs. Trans. Am. Math. Soc. 367(11), 7517–7563 (2015)

    Article  MathSciNet  Google Scholar 

  10. Buss, S.R., Krajíček, J.: An application of boolean complexity to separation problems in bounded arithmetic. Proc. Lond. Math. Soc. 69(3), 1–21 (1994)

    Article  MathSciNet  Google Scholar 

  11. Chang, R., Kadin, J.: The Boolean hierarchy and the polynomial hierarchy: a closer connection. SIAM J. Comput. 25(2), 340–354 (1996)

    Article  MathSciNet  Google Scholar 

  12. Chiari, M., Krajíček, J.: Witnessing functions in bounded arithmetic and search problems. J. Symb. Log. 63(3), 1095–1115 (1998)

    Article  MathSciNet  Google Scholar 

  13. Chiari, M., Krajíček, J.: Lifting independence results in bounded arithmetic. Arch. Math. Log. 38(2), 123–138 (1999)

    Article  MathSciNet  Google Scholar 

  14. Clote, P., Takeuti, G.: First order bounded arithmetic and small boolean circuit complexity classes. In: Clote, P., Remmel, J.B. (eds.) Feasible Mathematics II, Progress in Computer Science and Applied Logic, vol. 13, pp. 154–218. Birkhäuser, Boston (1995)

    MATH  Google Scholar 

  15. Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Proceedings of the 7th Annual ACM Symposium on Theory of Computing, pp. 83–97 (1975)

  16. Cook, S.A., Krajíček, J.: Consequences of the provability of \(\mathbf{NP}\subseteq \mathbf{P}/\mathbf{poly}\). J. Symb. Log. 72(4), 1353–1371 (2007)

    Article  Google Scholar 

  17. Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Perspectives in Logic. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  18. Cook, S.A., Nguyen, P.: Corrections for [17] (2013). http://www.cs.toronto.edu/~sacook/homepage/corrections.pdf

  19. Cordón-Franco, A., Fernández-Margarit, A., Lara-Martín, F.F.: Existentially closed models and conservation results in bounded arithmetic. J. Log. Comput. 19(1), 123–143 (2009)

    Article  MathSciNet  Google Scholar 

  20. Cordón-Franco, A., Lara-Martín, F.F.: Local induction and provably total computable functions. Ann. Pure Appl. Log. 165(9), 1429–1444 (2014)

    Article  MathSciNet  Google Scholar 

  21. Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, Berlin (1993) (Second edition 1998)

  22. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Micali, S. (ed.) Randomness and Computation, Advances in Computing Research: A Research Annual, vol. 5, pp. 143–170. JAI Press, Greenwich, CT (1989)

    Google Scholar 

  23. Jeřábek, E.: Approximate counting by hashing in bounded arithmetic. J. Symb. Log. 74(3), 829–860 (2009)

    Article  MathSciNet  Google Scholar 

  24. Jeřábek, E.: On theories of bounded arithmetic for \(\mathit{NC}^1\). Ann. Pure Appl. Log. 162(4), 322–340 (2011)

    Article  MathSciNet  Google Scholar 

  25. Jeřábek, E., Nguyen, P.: Simulating non-prenex cuts in quantified propositional calculus. Math. Log. Q. 57(5), 524–532 (2011)

    Article  MathSciNet  Google Scholar 

  26. Johannsen, J., Pollett, C.: On the \(\varDelta ^b_1\)-bit-comprehension rule. In: Buss, S.R., Hájek, P., Pudlák, P. (eds.) Logic colloquium ’98: proceedings of the 1998 ASL European summer meeting held in Prague, Czech Republic, pp. 262–280. ASL (2000)

  27. Kaye, R.: Parameter free induction in arithmetic. In: Proceedings of the 5th Easter Conference on Model Theory, pp. 70–81. Sektion Mathematik der Humboldt-Universität zu Berlin (1987). Seminarbericht Nr. 93

  28. Kaye, R.: Axiomatizations and quantifier complexity. In: Proceedings of the 6th Easter Conference on Model Theory, pp. 65–84. Sektion Mathematik der Humboldt-Universität zu Berlin (1988). Seminarbericht Nr. 98

  29. Kaye, R.: Diophantine induction. Ann. Pure Appl. Logic 46(1), 1–40 (1990)

    Article  MathSciNet  Google Scholar 

  30. Kaye, R., Paris, J., Dimitracopoulos, C.: On parameter free induction schemas. J. Symb. Log. 53(4), 1082–1097 (1988)

    Article  MathSciNet  Google Scholar 

  31. Krajíček, J.: Fragments of bounded arithmetic and bounded query classes. Trans. Am. Math. Soc. 338(2), 587–598 (1993)

    Article  MathSciNet  Google Scholar 

  32. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory, Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  33. Krajíček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arithmetic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36(1), 29–46 (1990)

    Article  MathSciNet  Google Scholar 

  34. Krajíček, J., Pudlák, P., Takeuti, G.: Bounded arithmetic and the polynomial hierarchy. Ann. Pure Appl. Log. 52(1–2), 143–153 (1991)

    Article  MathSciNet  Google Scholar 

  35. Paris, J.B., Wilkie, A.J.: Counting problems in bounded arithmetic. In: Di Prisco, C.A. (ed.) Methods in Mathematical Logic. Lecture Notes in Mathematics, vol. 1130, pp. 317–340. Springer-Verlag, Berlin (1985)

    Chapter  Google Scholar 

  36. Skelley, A., Thapen, N.: The provably total search problems of bounded arithmetic. Proc. Lond. Math. Soc. 103(1), 106–138 (2011)

    Article  MathSciNet  Google Scholar 

  37. Yao, A.C.C.: Separating the polynomial-time hierarchy by oracles. In: Tarjan, R.E. (ed.) Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science, pp. 1–10 (1985)

  38. Zambella, D.: Notes on polynomially bounded arithmetic. J. Symb. Log. 61(3), 942–966 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Andrés Cordón-Franco and Félix Lara-Martín for stimulating discussions of the topic, and for drawing my attention to [28]. I am grateful to the anonymous reviewer for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Jeřábek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by Center of Excellence CE-ITI under the grant P202/12/G061 of GA ČR. The Institute of Mathematics of the Czech Academy of Sciences is supported by RVO: 67985840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeřábek, E. Induction rules in bounded arithmetic. Arch. Math. Logic 59, 461–501 (2020). https://doi.org/10.1007/s00153-019-00702-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-019-00702-w

Keywords

Mathematics Subject Classification

Navigation