Skip to main content
Log in

Polynomial time ultrapowers and the consistency of circuit lower bounds

  • Original Study
  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory \(\forall \mathsf {PV}\) of all polynomial time functions. Generalizing a theorem of Hirschfeld (Israel J Math 20(2):111–126, 1975), we show that every countable model of \(\forall \mathsf {PV}\) is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical sense of Keisler (in: Bergelson, V., Blass, A., Di Nasso, M., Jin, R. (eds.) Ultrafilters across mathematics, contemporary mathematics vol 530, pp 163–179. AMS, New York, 1963). Using a polynomial time ultrapower over a nonstandard Herbrand saturated model of \(\forall \mathsf {PV}\) we show that \(\forall \mathsf {PV}\) is consistent with a formal statement of a polynomial size circuit lower bound for a polynomial time computable function. This improves upon a recent result of Krajíček and Oliveira (Logical methods in computer science 13 (1:4), 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. All relevant technical notions will be defined precisely later.

  2. For \(\ell ,k\in \mathbb {N}\), the theory \(\forall \mathsf {PV}\cup \{\exists n LB [g](c\cdot n^\ell ,n)\mid c\in \mathbb {N}\}\) does not seem to imply \(\forall z\exists n LB [g](|z|\cdot n^k, n)\). For all we know, there could be a nonstandard model of the former theory that contains only standard n witnessing the lower bounds, while every nonstandard model of \(\forall z\exists n LB [g](|z|\cdot n^k, n)\) witnesses the lower bound with some nonstandard n.

  3. This is a slight abuse of standard terminology according to which a structure is existentially closed if it is existentially closed as a substructure of any of its extensions. We shall not use this terminology.

  4. In contrast to the setting of [17] and of this paper, [11, 27, 31, 37] consider ultrafilters over restricted Boolean algebras, namely those consisting of sets with characteristic function in F.

References

  1. Avigad, J.: Saturated models of universal theories. Ann. Pure Appl. Logic 118(3), 219–234 (2002)

    Article  MathSciNet  Google Scholar 

  2. Buss, S.R.: Bounded arithmetic and propositional proof complexity. In: H. Schwichtenberg (ed.) Logic of Computation, pp. 67–122. Springer, Berlin (1997)

    Chapter  Google Scholar 

  3. Bydžovský, J.: Powers of models in weak arithmetics. MSc. Thesis, University of Vienna, 2018. http://dmg.tuwien.ac.at/bydzovsky/mthesis.pdf

  4. Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Proceedings of the Seventh Annual ACM Symposium on Theory of Computing (STOC), pp. 83–97. ACM, New York (1975)

  5. Cook, S.A., Krajíček, J.: Consequences of the provability of NP \(\subseteq \) P/poly. J. Symb. Logic 72(4), 1353–1371 (2007)

    Article  Google Scholar 

  6. Cobham, A.: The instrinsic computational difficulty of functions. In: Bar Hillel, Y. (ed.) Proceedings of the 1964 International Congress for Logic, Methodology, and the Philosophy of Science, pp. 24–30. North-Holland Publising Co., Amsterdam (1965)

  7. Davis, M.: Hilbert’s tenth problem is unsolvable. Am. Math. Mon. 80(3), 233–269 (1973)

    Article  MathSciNet  Google Scholar 

  8. Frayne, T.E., Morel, A.C., Scott, D.S.: Reduced direct products. Fundam. Math. 51(3), 195–228 (1962)

    Article  MathSciNet  Google Scholar 

  9. Garlík, M.: Construction of models of bounded arithmetic by restricted reduced powers. Arch. Math. Logic 55, 625–648 (2016)

    Article  MathSciNet  Google Scholar 

  10. Hájek, P., Pudlák, P.: Metamathematics of first order arithmetic. Springer/ASL Perspectives in Logic (1993)

  11. Hirschfeld, J.: Models of arithmetic and recursive functions. Israel J. Math. 20(2), 111–126 (1975)

    Article  MathSciNet  Google Scholar 

  12. Jeřábek, E.: Approximate counting in bounded arithmetic. J. Symb. Logic 72(3), 959–993 (2007)

    Article  MathSciNet  Google Scholar 

  13. Keisler, H.J.: On the class of limit ultrapowers of a relational system. Not. Am. Math. Soc. 7, 878–879 (1960)

    Google Scholar 

  14. Keisler, H.J.: Limit ultrapowers. Trans. AMS 107, 382–408 (1963)

    Article  MathSciNet  Google Scholar 

  15. Keisler, H.J.: The ultraproduct construction. In: Bergelson, V., Blass, A., Di Nasso, M., Jin, R. (eds.) Ultrafilters Across Mathematics, Contemporary Mathematics 530, pp. 163-179. AMS, New York (2010)

  16. Kochen, S.B.: Ultraproducts in the theory of models. Ann. Math. 74(2), 221–261 (1961)

    Article  MathSciNet  Google Scholar 

  17. Kochen, S.B., Kripke, S.A.: Non-standard models of Peano arithmetic. L’Enseignement Mathématique 28, 211–231 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  19. Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symb. Logic 62(2), 457–486 (1997)

    Article  MathSciNet  Google Scholar 

  20. Krajíček, J.: Extensions of models of PV. In: Makowsky, J. A., Ravve, E.V. (eds.) Logic Colloquium’95, ASL/Springer Series Lecture Notes in Logic 11, pp. 104–114 (1998)

    Chapter  Google Scholar 

  21. Krajíček, J.: Forcing with random variables and proof complexity. London Mathematical Society Lecture Note Series 382, Cambridge University Press, Cambridge (2011)

  22. Krajíček, J., Oliveira, I.C.: Unprovability of circuit upper bounds in Cook’s theory PV. Logical Methods in Computer Science 13 (1:4) (2017)

  23. Krajíček, J., Pudlák, P., Takeuti, G.: Bounded arithmetic and polynomial hierarchy. Ann. Pure Appl. Logic 52, 143–154 (1991)

    Article  MathSciNet  Google Scholar 

  24. Łos, J.: Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. Mathematical Interpretations of Formal Systems, North Holland, pp. 98–113 (1955)

  25. Mac Dowell, R., Specker, E.: Modelle der Arithmetik. In: Infinitistic Methods. Proceedings of the Symposium on Foundations of Mathematics 1959, pp. 257–263. Pergamon Press, Warsaw (1961)

  26. Maly, J., Müller, M.: A remark on pseudo proof systems and hard instances of the satisfiability problem. Math. Logic Q 64(6), 418–428 (2018)

    Article  MathSciNet  Google Scholar 

  27. McLaughlin, T.G.: Sub-arithmetical ultrapowers: a survey. Ann. Pure Appl. Logic 49(2), 143–191 (1990)

    Article  MathSciNet  Google Scholar 

  28. Müller, M., Pich, J.: Feasibly constructive proofs of succinct weak circuit lower bounds. Preprint at Electronic Colloqium of Computational Complexity, Technical Report TR17-144 (2017)

  29. Paris, J., Harrington, L.: A mathematical incompleteness in Peano arithmetic. Handbook of Mathematical Logic, North Holland, pp. 1133–1142 (1977)

  30. Pudlák, P.: Logical Foundations of Mathematics and Computational Complexity, a Gentle Introduction. Springer, Berlin (2013)

    MATH  Google Scholar 

  31. Pudlák, P.: Randomness, pseudorandomness and models of arithmetic. In: Cégielski, P., Cornaros, Ch. (eds.) New Studies in Weak Arithmetics, pp. 199–216. CSLI Publications, Stanford (2013)

  32. Razborov, A.A.: On provably disjoint NP-pairs. Basic Research in Computer Science BRICS RS-94-36 (1994)

  33. Razborov, A.A.: Bounded arithmetic and lower bounds in Boolean complexity. Feasible Math. II, 344–386 (1995)

    Article  MathSciNet  Google Scholar 

  34. Razborov, A.A.: Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic. Izv. Rus. Acad. Sci. 59, 201–224 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)

    Article  MathSciNet  Google Scholar 

  36. Santhanam, R., Williams, R.: On uniformity and circuit lower bounds. Comput. Complex. 23(2), 177–205 (2014)

    Article  MathSciNet  Google Scholar 

  37. Scott, D.: On constructing models of arithmetic. In: Infinitistic Methods. Proceedings of the Symposium on Foundations of Mathematics 1959, pp. 235–255. Pergamon Press, Warsaw (1961)

  38. Shelah, S.: Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math. 10, 224–233 (1971)

    Article  MathSciNet  Google Scholar 

  39. Skolem, T.: Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundam. Math. 23(1), 150–161 (1934)

    Article  Google Scholar 

  40. Zambella, D.: Notes on polynomially bounded arithmetic. J. Symb. Logic 61(3), 942–966 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We want to thank the anonymous referee for detailed comments and suggestions. We further thank Ján Pich for many helpful conversations about the topic of the current paper. Jan Bydžovský is currently partially supported by the Austrian Science Fund (FWF) under Project P31063. Moritz Müller is currently supported by the European Research Council (ERC) under the European Unions Horizon 2020 research programme (Grant Agreement ERC-2014-CoG 648276 AUTAR); the main part of the current work has been done while supported by the Austrian Science Fund (FWF) under Project P28699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bydžovský.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on Jan Bydžovský’s Master Thesis [3] written under the supervision of Moritz Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bydžovský, J., Müller, M. Polynomial time ultrapowers and the consistency of circuit lower bounds. Arch. Math. Logic 59, 127–147 (2020). https://doi.org/10.1007/s00153-019-00681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-019-00681-y

Keywords

Mathematics Subject Classification

Navigation