Skip to main content
Log in

The Number of Almost Perfect Nonlinear Functions Grows Exponentially

  • Published:
Journal of Cryptology Aims and scope Submit manuscript

Abstract

Almost perfect nonlinear (APN) functions play an important role in the design of block ciphers as they offer the strongest resistance against differential cryptanalysis. Despite more than 25 years of research, only a limited number of APN functions are known. In this paper, we show that a recent construction by Taniguchi provides at least \(\frac{\varphi (m)}{2}\left\lceil \frac{2^m+1}{3m} \right\rceil \) inequivalent APN functions on the finite field with \({2^{2m}}\) elements, where \(\varphi \) denotes Euler’s totient function. This is a great improvement of previous results: for even m, the best known lower bound has been \(\frac{\varphi (m)}{2}\left( \lfloor \frac{m}{4}\rfloor +1\right) \); for odd m, there has been no such lower bound at all. Moreover, we determine the automorphism group of Taniguchi’s APN functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Anbar, T. Kalaycı, W. Meidl, Determining the Walsh spectra of Taniguchi’s and related APN-functions. In: Finite Fields Appl. 60, 101577 (2019)

  2. T. Beth, C. Ding, On almost perfect nonlinear permutations, in Advances in cryptology—EUROCRYPT ’93 (Lofthus, 1993), Lecture Notes in Comput. Sci., vol. 765 (Springer, Berlin, 1994), pp. 65–76

  3. E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4(1), 3–72 (1991)

    Article  MathSciNet  Google Scholar 

  4. C. Blondeau, K. Nyberg, Perfect nonlinear functions and cryptography. Finite Fields Appl. 32, 120–147 (2015)

    Article  MathSciNet  Google Scholar 

  5. A. W. Bluher, On \(x^{q+1} + ax + b\). Finite Fields Appl. 10(3), 285–305 (2004)

    Article  MathSciNet  Google Scholar 

  6. W. Bosma, J. Cannon, C. Playoust, The magma algebra system. i. the user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

  7. K. A. Browning, J. F. Dillon, M. T. McQuistan, A. J. Wolfe, An APN permutation in dimension six, in Finite fields: theory and applications, Contemp. Math. Amer. Math. Soc., vol. 518 (Providence, RI, 2010), pp. 33–42

  8. K. Browning, J. Dillon, R. Kibler, M. McQuistan, APN polynomials and related codes. In: J. Comb. Inform. Syst. Sci. 34, 135–159 (2009)

    MATH  Google Scholar 

  9. L. Budaghyan. Construction and analysis of cryptographic functions. Heidelberg: Springer, 2014.

    Book  Google Scholar 

  10. L. Budaghyan, M. Calderini, I. Villa, On equivalence between known families of quadratic APN functions. In: Finite Fields Appl. 66, 101704 (2020)

  11. L. Budaghyan, C. Carlet, G. Leander, On inequivalence between known power apn functions, in Proceedings of the International Workshop on Boolean Functions: Cryptography and Applications, BFCA 2008. Ed. by O. Masnyk-Hansen, J.-F. Michon, P. Valarcher, and J.-B. Yunès (Copenhagen, 2008)

  12. A. Canteaut, L. Perrin, On CCZ-equivalence, extended-affine equivalence, and function twisting. Finite Fields Appl. 56, 209–246 (2019)

    Article  MathSciNet  Google Scholar 

  13. C. Carlet, Relating three nonlinearity parameters of vectorial functions and building APN functions from bent functions. Des. Codes Cryptogr. 59(1–3), 89– 109 (2011)

    Article  MathSciNet  Google Scholar 

  14. C. Carlet, P. Charpin, V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998)

    Article  MathSciNet  Google Scholar 

  15. J. Daemen, V. Rijmen, AES proposal. National Institute of Standards and Technology, Rijndael. 2000.

    MATH  Google Scholar 

  16. U. Dempwolff, Y. Edel, Dimensional dual hyperovals and APN functions with translation groups. J. Algebr. Comb. 39(2), 457–496 (2014)

    Article  MathSciNet  Google Scholar 

  17. H. Dobbertin, Almost perfect nonlinear power functions on GF(2n): a new case for n divisible by 5, in Finite fields and Applications. Proceedings of The Fifth International Conference on Finite Fields and Applications Fq 5, held at the University of Augsburg, Germany, August 2–6, 1999. Ed. by D. Jungnickel and H. Niederreiter (Berlin, Heidelberg: Springer, 2001), pp. 113–121

  18. H. Dobbertin, Almost perfect nonlinear power functions on GF(2n): the niho case. Inform. and Comput. 151(1–2), 57–72 (1999)

    Article  MathSciNet  Google Scholar 

  19. H. Dobbertin, Almost perfect nonlinear power functions on G\(F(2^{n})\): the welch case. IEEE Trans. Inform. Theory 45(4), 1271–1275 (1999)

    Article  MathSciNet  Google Scholar 

  20. Y. Edel, G. Kyureghyan, A. Pott, A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006)

    Article  MathSciNet  Google Scholar 

  21. Y. Edel, On quadratic APN functions and dimensional dual hyperovals. Des. Codes Cryptogr. 57(1), 35–44 (2010)

    Article  MathSciNet  Google Scholar 

  22. R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inform. Theory 14(1), 154–156 (1968)

    Article  Google Scholar 

  23. T. Helleseth, A. Kholosha, On the equation \(x^{2l+1} + x + a = 0\) over GF(\(2^{k}\)). Finite Fields Appl. 14(1), 159–176 (2008)

    Article  MathSciNet  Google Scholar 

  24. H. Janwa, R. M. Wilson, Hyperplane sections of fermat varieties in \({\bf P}^{3}\) in char. 2 and some applications to cyclic codes. in Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993). Lecture Notes in Comput. Sci, vol. 673 (Springer, Berlin, 1993) pp. 180–194

  25. T. Kasami, The weight enumerators for several classes of subcodes of the 2nd order binary reed-muller codes. Information and Control 18, 369–394 (1971)

    Article  MathSciNet  Google Scholar 

  26. C. Kaspers, Y. Zhou, A lower bound on the number of inequivalent APN functions. 2020. arXiv:2002.00673 [math.CO]

  27. M. Matsui, New block encryption algorithm misty. In: Fast Software Encryption. Ed. by E. Biham (Berlin, Heidelberg: Springer, 1997), pp. 54–68

    Chapter  Google Scholar 

  28. K. Nyberg, Differentially uniform mappings for cryptography, in Advances in cryptology—EUROCRYPT ’93 (Lofthus, 1993). Lecture Notes in Comput. Sci., vol. 765 (Springer, Berlin, 1994), pp. 55–64.

  29. A. Pott, Almost perfect and planar functions. Des. Codes Cryptogr. 78(1), 141–195 (2016)

    Article  MathSciNet  Google Scholar 

  30. H. Taniguchi, On some quadratic APN functions. Des. Codes Cryptogr. 87(9), 1973–1983 (2019)

    Article  MathSciNet  Google Scholar 

  31. S. Yoshiara, Dimensional dual hyperovals associated with quadratic APN functions. Innov. Incidence Geom. 8, 147–169 (2008)

    Article  MathSciNet  Google Scholar 

  32. S. Yoshiara, Equivalences of quadratic APN functions. J. Algebr. Comb. 35(3), 461–475 (2012)

    Article  MathSciNet  Google Scholar 

  33. Y. Zhou, A. Pott, A new family of semifields with 2 parameters. Adv. Math. 234, 43–60 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their useful comments and suggestions, and we thank Satoshi Yoshiara and Ulrich Dempwolff for their helpful comments on Lemma 2.4 and the connection of the automorphism groups of quadratic APN functions under EA- and under CCZ-equivalence.

This work is partially supported by National Key R&D Program of China (No. 2017YFB0802000) and Training Program for Excellent Young Innovators of Changsha (No. kq1905052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhou.

Additional information

Communicated by Kaisa Nyberg

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaspers, C., Zhou, Y. The Number of Almost Perfect Nonlinear Functions Grows Exponentially. J Cryptol 34, 4 (2021). https://doi.org/10.1007/s00145-020-09373-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00145-020-09373-w

Keywords

Navigation