Skip to main content
Log in

Nangibotide in patients with septic shock: a Phase 2a randomized controlled clinical trial

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Nangibotide is a specific TREM-1 inhibitor that tempered deleterious host–pathogens interactions, restored vascular function, and improved survival, in animal septic shock models. This study evaluated the safety and pharmacokinetics of nangibotide and its effects on clinical and pharmacodynamic parameters in septic shock patients.

Methods

This was a multicenter randomized, double-blind, two-stage study. Patients received either continuous infusion of nangibotide (0.3, 1.0, or 3.0 mg/kg/h) or placebo. Treatment began < 24 h after shock onset and continued for up to 5 days. Safety primary outcomes were adverse events (AEs), whether serious or not, and death. Exploratory endpoints evaluated nangibotide effects on pharmacodynamics, organ function, and mortality, and were analyzed according to baseline sTREM-1 concentrations.

Results

Forty-nine patients were randomized. All treatment emergent AEs (TEAEs) were collected until Day 28. No significant differences were observed in TEAEs between treatment groups. No drug withdrawal linked to TEAE nor appearance of anti-drug antibodies were reported. Nangibotide pharmacokinetics appeared to be dose-proportional and clearance was dose-independent. Nangibotide did not significantly affect pharmacodynamic markers. Decrease in SOFA score LS mean change (± SE) from baseline to Day 5 in pooled nangibotide groups versus placebo was − 0.7 (± 0.85) in the randomized population and − 1.5 (± 1.12) in patients with high baseline plasma sTREM-1 concentrations (non-significant). This pattern was similar to organ support end points.

Conclusion

No significant increases in TEAEs were detected in nangibotide-treated patients versus placebo. These results encourage further evaluation of nangibotide and further exploration of plasma sTREM-1 concentrations as a predictive efficacy biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Sharing of de-identified patient data does not comply with the General Data Protection Regulation (GDPR) in the EU. Therefore, individual, de-identified participant data will currently not be shared. This clinical trial was designed and started before the regulation came into effect. The informed consent form that the participants signed for this study did not address the sharing of individual patient data. Therefore, the authors are currently not allowed to share such data.

References

  1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet 395(10219):200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

    Article  Google Scholar 

  2. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche J-D, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent J-L, Wiersinga WJ, Zimmerman JL, Dellinger RPJICM (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377. https://doi.org/10.1007/s00134-017-4683-6

    Article  PubMed  Google Scholar 

  3. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, Hayden DL, Hennessy L, Moore EE, Minei JP, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Brownstein BH, Mason PH, Baker HV, Finnerty CC, Jeschke MG, López MC, Klein MB, Gamelli RL, Gibran NS, Arnoldo B, Xu W, Zhang Y, Calvano SE, McDonald-Smith GP, Schoenfeld DA, Storey JD, Cobb JP, Warren HS, Moldawer LL, Herndon DN, Lowry SF, Maier RV, Davis RW, Tompkins RG (2011) A genomic storm in critically injured humans. J Exp Med 208(13):2581–2590. https://doi.org/10.1084/jem.20111354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bouchon A, Facchetti F, Weigand MA, Colonna M (2001) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410(6832):1103–1107. https://doi.org/10.1038/35074114

    Article  CAS  PubMed  Google Scholar 

  5. Colonna M, Facchetti F (2003) TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory responses. J Infect Dis 187(Suppl 2):S397–S401. https://doi.org/10.1086/374754

    Article  CAS  PubMed  Google Scholar 

  6. Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164(10):4991–4995. https://doi.org/10.4049/jimmunol.164.10.4991

    Article  CAS  PubMed  Google Scholar 

  7. Derive M, Massin F, Gibot S (2010) Triggering receptor expressed on myeloid cells-1 as a new therapeutic target during inflammatory diseases. Self Nonself 1(3):225–230. https://doi.org/10.4161/self.1.3.12891

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jolly L, Lemarie J, Carrasco K, Popovic B, Derive M, Boufenzer A, Gibot S (2017) Triggering receptor expressed on myeloid cells-1: a new player in platelet aggregation. Thromb Haemost 117(9):1772–1781. https://doi.org/10.1160/th17-03-0156

    Article  PubMed  Google Scholar 

  9. Jolly L, Carrasco K, Derive M, Lemarie J, Boufenzer A, Gibot S (2018) Targeted endothelial gene deletion of triggering receptor expressed on myeloid cells-1 protects mice during septic shock. Cardiovasc Res 114(6):907–918. https://doi.org/10.1093/cvr/cvy018

    Article  CAS  PubMed  Google Scholar 

  10. Gibot S, Massin F, Le Renard P, Bene MC, Faure GC, Bollaert PE, Levy B (2005) Surface and soluble triggering receptor expressed on myeloid cells-1: expression patterns in murine sepsis. Crit Care Med 33(8):1787–1793. https://doi.org/10.1097/01.ccm.0000172614.36571.75

    Article  CAS  PubMed  Google Scholar 

  11. Knapp S, Gibot S, de Vos A, Versteeg HH, Colonna M, van der Poll T (2004) Cutting edge: expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. J Immunol 173(12):7131–7134. https://doi.org/10.4049/jimmunol.173.12.7131

    Article  CAS  PubMed  Google Scholar 

  12. Bleharski JR, Kiessler V, Buonsanti C, Sieling PA, Stenger S, Colonna M, Modlin RL (2003) A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response. J Immunol 170(7):3812–3818. https://doi.org/10.4049/jimmunol.170.7.3812

    Article  CAS  PubMed  Google Scholar 

  13. Netea MG, Azam T, Ferwerda G, Girardin SE, Kim SH, Dinarello CA (2006) Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. J Leukoc Biol 80(6):1454–1461. https://doi.org/10.1189/jlb.1205758

    Article  CAS  PubMed  Google Scholar 

  14. Arts RJ, Joosten LA, van der Meer JW, Netea MG (2013) TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors. J Leukoc Biol 93(2):209–215. https://doi.org/10.1189/jlb.0312145

    Article  CAS  PubMed  Google Scholar 

  15. Roe K, Gibot S, Verma S (2014) Triggering receptor expressed on myeloid cells-1 (TREM-1): a new player in antiviral immunity? Front Microbiol 5:627. https://doi.org/10.3389/fmicb.2014.00627

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ivan FX, Rajapakse JC, Welsch RE, Rozen SG, Narasaraju T, Xiong GM, Engelward BP, Chow VT (2012) Differential pulmonary transcriptomic profiles in murine lungs infected with low and highly virulent influenza H3N2 viruses reveal dysregulation of TREM1 signaling, cytokines, and chemokines. Funct Integr Genomics 12(1):105–117. https://doi.org/10.1007/s10142-011-0247-y

    Article  CAS  PubMed  Google Scholar 

  17. Smith NL, Denning DW (2011) Underlying conditions in chronic pulmonary aspergillosis including simple aspergilloma. Eur Respir J 37(4):865–872. https://doi.org/10.1183/09031936.00054810

    Article  CAS  PubMed  Google Scholar 

  18. Huang W, Ling S, Jia X, Lin B, Huang X, Zhong J, Li W, Lin X, Sun Y, Yuan J (2014) Tacrolimus (FK506) suppresses TREM-1 expression at an early but not at a late stage in a murine model of fungal keratitis. PLoS ONE 9(12):e114386. https://doi.org/10.1371/journal.pone.0114386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mohamadzadeh M, Coberley SS, Olinger GG, Kalina WV, Ruthel G, Fuller CL, Swenson DL, Pratt WD, Kuhns DB, Schmaljohn AL (2006) Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils by marburg and ebola viruses. J Virol 80(14):7235–7244. https://doi.org/10.1128/jvi.00543-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ruiz-Pacheco JA, Vivanco-Cid H, Izaguirre-Hernandez IY, Estrada-Garcia I, Arriaga-Pizano L, Chacon-Salinas R, Fonseca-Coronado S, Vaughan G, Tovar KR, Rivera-Osorio MP, Escobar-Gutierrez A (2014) TREM-1 modulation during early stages of dengue virus infection. Immunol Lett 158(1–2):183–188. https://doi.org/10.1016/j.imlet.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  21. Hyun J, McMahon RS, Lang AL, Edwards JS, Badilla AD, Greene ME, Stone GW, Pallikkuth S, Stevenson M, Dykxhoorn DM, Kottilil S, Pahwa S, Thomas E (2019) HIV and HCV augments inflammatory responses through increased TREM-1 expression and signaling in Kupffer and Myeloid cells. PLoS Pathog 15(7):e1007883. https://doi.org/10.1371/journal.ppat.1007883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kozik J-H, Trautmann T, Carambia A, Preti M, Lütgehetmann M, Krech T, Wiegard C, Heeren J, Herkel J (2016) Attenuated viral hepatitis in Trem1 −/− mice is associated with reduced inflammatory activity of neutrophils. Sci Rep 6(1):28556. https://doi.org/10.1038/srep28556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar M, Belcaid M, Nerurkar VR (2016) Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Sci Rep 6:26350. https://doi.org/10.1038/srep26350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber B, Schuster S, Zysset D, Rihs S, Dickgreber N, Schurch C, Riether C, Siegrist M, Schneider C, Pawelski H, Gurzeler U, Ziltener P, Genitsch V, Tacchini-Cottier F, Ochsenbein A, Hofstetter W, Kopf M, Kaufmann T, Oxenius A, Reith W, Saurer L, Mueller C (2014) TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog 10(1):e1003900. https://doi.org/10.1371/journal.ppat.1003900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Derive M, Boufenzer A, Bouazza Y, Groubatch F, Alauzet C, Barraud D, Lozniewski A, Leroy P, Tran N, Gibot S (2013) Effects of a TREM-like transcript 1-derived peptide during hypodynamic septic shock in pigs. Shock 39(2):176–182. https://doi.org/10.1097/SHK.0b013e31827bcdfb

    Article  CAS  PubMed  Google Scholar 

  26. Gomez-Pina V, Soares-Schanoski A, Rodriguez-Rojas A, Del Fresno C, Garcia F, Vallejo-Cremades MT, Fernandez-Ruiz I, Arnalich F, Fuentes-Prior P, Lopez-Collazo E (2007) Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes. J Immunol 179(6):4065–4073. https://doi.org/10.4049/jimmunol.179.6.4065

    Article  CAS  PubMed  Google Scholar 

  27. Carrasco K, Boufenzer A, Jolly L, Le Cordier H, Wang G, Heck AJR, Cerwenka A, Vinolo E, Nazabal A, Kriznik A, Launay P, Gibot S, Derive M (2018) TREM-1 multimerization is essential for its activation on monocytes and neutrophils. Cell Mol Immunol 16(5):460–472. https://doi.org/10.1038/s41423-018-0003-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gibot S, Kolopp-Sarda MN, Bene MC, Bollaert PE, Lozniewski A, Mory F, Levy B, Faure GC (2004) A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J Exp Med 200(11):1419–1426. https://doi.org/10.1084/jem.20040708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Su L, Liu D, Chai W, Liu D, Long Y (2016) Role of sTREM-1 in predicting mortality of infection: a systematic review and meta-analysis. BMJ Open 6(5):e010314. https://doi.org/10.1136/bmjopen-2015-010314

    Article  PubMed  PubMed Central  Google Scholar 

  30. Charles PE, Noel R, Massin F, Guy J, Bollaert PE, Quenot JP, Gibot S (2016) Significance of soluble triggering receptor expressed on myeloid cells-1 elevation in patients admitted to the intensive care unit with sepsis. BMC Infect Dis 16(1):559. https://doi.org/10.1186/s12879-016-1893-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibot S, Cravoisy A, Levy B, Bene M-C, Faure G, Bollaert P-E (2004) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 350(5):451–458. https://doi.org/10.1056/NEJMoa031544

    Article  CAS  PubMed  Google Scholar 

  32. Rios-Toro JJ, Marquez-Coello M, Garcia-Alvarez JM, Martin-Aspas A, Rivera-Fernandez R, Saez de Benito A, Giron-Gonzalez JA (2017) Soluble membrane receptors, interleukin 6, procalcitonin and C reactive protein as prognostic markers in patients with severe sepsis and septic shock. PLoS ONE 12(4):e0175254. https://doi.org/10.1371/journal.pone.0175254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, She D, Feng D, Jia Y, Xie L (2011) Dynamic changes of serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) reflect sepsis severity and can predict prognosis: a prospective study. BMC Infect Dis 11:53. https://doi.org/10.1186/1471-2334-11-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jedynak M, Siemiatkowski A, Mroczko B, Groblewska M, Milewski R, Szmitkowski M (2018) Soluble TREM-1 serum level can early predict mortality of patients with sepsis, severe sepsis and septic shock. Arch Immunol Ther Exp (Warsz) 66(4):299–306. https://doi.org/10.1007/s00005-017-0499-x

    Article  Google Scholar 

  35. Derive M, Bouazza Y, Sennoun N, Marchionni S, Quigley L, Washington V, Massin F, Max JP, Ford J, Alauzet C, Levy B, McVicar DW, Gibot S (2012) Soluble TREM-like transcript-1 regulates leukocyte activation and controls microbial sepsis. J Immunol 188(11):5585–5592. https://doi.org/10.4049/jimmunol.1102674

    Article  CAS  PubMed  Google Scholar 

  36. Cuvier V, Lorch U, Witte S, Olivier A, Gibot S, Delor I, Garaud JJ, Derive M, Salcedo-Magguilli M (2018) A first-in-man safety and pharmacokinetics study of nangibotide, a new modulator of innate immune response through TREM-1 receptor inhibition. Br J Clin Pharmacol 84(10):2270–2279. https://doi.org/10.1111/bcp.13668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singer M, Deutschman CS, Seymour C et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lancaster GA, Dodd S, Williamson PR (2004) Design and analysis of pilot studies: recommendations for good practice. J Eval Clin Pract 10(2):307–312. https://doi.org/10.1111/j.2002.384.doc.x

    Article  PubMed  Google Scholar 

  39. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478. https://doi.org/10.1007/bf01061691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bergstrand M, Karlsson MO (2009) Handling data below the limit of quantification in mixed effect models. AAPS J 11(2):371–380. https://doi.org/10.1208/s12248-009-9112-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koyama K, Katayama S, Muronoi T, Tonai K, Goto Y, Koinuma T, Shima J, Nunomiya S (2018) Time course of immature platelet count and its relation to thrombocytopenia and mortality in patients with sepsis. PLoS ONE 13(1):e0192064. https://doi.org/10.1371/journal.pone.0192064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Derive M, Boufenzer A, Gibot S (2014) Attenuation of responses to endotoxin by the triggering receptor expressed on myeloid cells-1 inhibitor LR12 in nonhuman primate. Anesthesiology 120(4):935–942. https://doi.org/10.1097/aln.0000000000000078

    Article  CAS  PubMed  Google Scholar 

  43. Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, Wittebole X, Dugernier T, Perrotin D, Tidswell M, Jauregui L, Krell K, Pachl J, Takahashi T, Peckelsen C, Cordasco E, Chang CS, Oeyen S, Aikawa N, Maruyama T, Schein R, Kalil AC, Van Nuffelen M, Lynn M, Rossignol DP, Gogate J, Roberts MB, Wheeler JL, Vincent JL (2013) Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309(11):1154–1162. https://doi.org/10.1001/jama.2013.2194

    Article  CAS  PubMed  Google Scholar 

  44. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, Gardlund B, Marshall JC, Rhodes A, Artigas A, Payen D, Tenhunen J, Al-Khalidi HR, Thompson V, Janes J, Macias WL, Vangerow B, Williams MD (2012) Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 366(22):2055–2064. https://doi.org/10.1056/NEJMoa1202290

    Article  CAS  PubMed  Google Scholar 

  45. Vincent JL, Francois B, Zabolotskikh I, Daga MK, Lascarrou JB, Kirov MY, Pettila V, Wittebole X, Meziani F, Mercier E, Lobo SM, Barie PS, Crowther M, Esmon CT, Fareed J, Gando S, Gorelick KJ, Levi M, Mira JP, Opal SM, Parrillo J, Russell JA, Saito H, Tsuruta K, Sakai T, Fineberg D (2019) Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial. JAMA 321(20):1993–2002. https://doi.org/10.1001/jama.2019.5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, Monneret G, Rimmele T, Blood T, Morre M, Gregoire A, Mayo GA, Blood J, Durum SK, Sherwood ER, Hotchkiss RS (2018) Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight 3(5):98960. https://doi.org/10.1172/jci.insight.98960

    Article  PubMed  Google Scholar 

  47. Patil NK, Bohannon JK, Sherwood ER (2016) Immunotherapy: A promising approach to reverse sepsis-induced immunosuppression. Pharmacol Res 111:688–702. https://doi.org/10.1016/j.phrs.2016.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Antcliffe DB, Burnham KL, Al-Beidh F, Santhakumaran S, Brett SJ, Hinds CJ, Ashby D, Knight JC, Gordon AC (2019) Transcriptomic signatures in sepsis and a differential response to steroids from the VANISH randomized trial. Am J Respir Crit Care Med 199(8):980–986. https://doi.org/10.1164/rccm.201807-1419oc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seymour CW, Kennedy JN, Wang S, Chang C-CH, Elliott CF, Xu Z, Berry S, Clermont G, Cooper G, Gomez H, Huang DT, Kellum JA, Mi Q, Opal SM, Talisa V, van der Poll T, Visweswaran S, Vodovotz Y, Weiss JC, Yealy DM, Yende S, Angus DC (2019) Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA 321(20):2003–2017. https://doi.org/10.1001/jama.2019.5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Simon Lambden and Jean-Marie Grouin for critical review of this manuscript as well as the data monitoring and data adjudication committee members, Professors Michel Wolff and Jean Chastre. Support of PK NCA calculation and modeling was performed by Calvagone and MnS. Support for third-party writing assistance for this article, furnished by Megan Christian, was provided by Prism Ideas and funded by Inotrem SA.

Funding

This study, and editorial support for the preparation of this manuscript, was funded by Inotrem SA.

Author information

Authors and Affiliations

Authors

Contributions

JJG, SW, MSM, BF, and PFL conceived and designed the study. BF was the Principal investigator. BF, XW, RF, JPM, TD, SG, PP, MS, and PFL collected data. MSM and FV developed analysis tools. MSM, FV, BF, PFL, JJG, SG, MD, VC, and AO analyzed the data. BF, SG, MSM, and PFL wrote the manuscript. All authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Bruno François.

Ethics declarations

Conflicts of interest

BF reports personal fees from Inotrem during the conduct of the study, and personal fees from Biomérieux, Aridis, Ashai-Kasai, Polyphor, AM-Pharma, and Ferring outside the submitted work. XW reports fees from Inotrem during the conduct of the study, and fees from AKPA and Ferring outside the submitted work. RF reports personal fees from MSD, Pfizer, Shionogi, Grifols, Toray, and BD outside the submitted work. PFL reports personal fees from Inotrem outside the submitted work. FRV reports personal fees from Inotrem during the conduct of the study. PP reports personal fees from Inotrem during the conduct of the study, and fees from AM-Pharma, EBI, and Ferring outside the submitted work. SW has acted as a consultant to Inotrem. MD and SG hold patent EP2011055519, licensed to Inotrem. MD, AO, VC, JJG, and MSM are employees of Inotrem. JPM, TD, and MS have nothing to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval of the study protocol and all amendments was granted by the following Ethics Committees: France: Comité de Protection des Personnes Ile de France (initial approval 13th September 2017; 2017-04-02 MS1 RIPH 1°). The Netherlands: Radboud University Medical Centre, Commissie Mensgebonden Onderzoek Regio Arnhem-Nijmegen (initial approval 19th July 2017; 2017-3326), Belgium: Cliniques Universitaires Saint Luc, Comité d’Éthique Hospitalo-Facultaire (initial approval 27th April 2017; 2017/15MAR138) Spain: Hospital Clinico San Carlos, Comité de Ética de la Investigación con Medicamentos (initial approval 31st May 2017; 17/162-R_M).

Informed consent

Written informed consent was obtained from each participant, or authorized representative in case of incapacitated patients, prior to study enrollment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

François, B., Wittebole, X., Ferrer, R. et al. Nangibotide in patients with septic shock: a Phase 2a randomized controlled clinical trial. Intensive Care Med 46, 1425–1437 (2020). https://doi.org/10.1007/s00134-020-06109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-020-06109-z

Keywords

Navigation