Skip to main content
Log in

Hat die Navigation in der Traumatologie noch einen Stellenwert?

Does navigation still have a value in trauma surgery?

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Navigationssysteme sollen die Präzision erhöhen und den Operateur bei der Durchführung bestimmter Eingriffe unterstützen. Unterschieden werden eine bildbasierte und eine bildfreie Navigation. Bildbasierte Verfahren beruhen auf 2‑D- bzw. heutzutage meist auf 3‑D-Systemen. Bei der bildfreien Navigation wird u. a. der 3‑D-Druck eingesetzt.

Indikationen

In der Literatur existieren zahlreiche Studien zu Navigationsverfahren in der Unfallchirurgie. Während sich die Navigation in der Extremitätenchirurgie nicht durchsetzen konnte, ist der Einsatz der 3‑D-Navigation in der Becken- und Wirbelsäulenchirurgie etabliert. Vor allem bei Frakturen des hinteren Beckenringes (SI-Verschraubung) und bei dorsalen Stabilisierungsoperationen der Halswirbelsäule wird die Navigation regelmäßig angewendet.

Voraussetzungen

Um die Navigation optimal einsetzen zu können, sollte die Lernkurve abgeschlossen sein und die Technik regelmäßig angewendet werden. Zudem sollte der Chirurg die Operationstechnik sicher in konventioneller Technik beherrschen, um potenzielle Fehler der Navigation zu erkennen.

Vor- und Nachteile

Vorteile sind neben der erhöhten Patientensicherheit, die reduzierte Strahlenbelastung sowie eine geringere Invasivität chirurgischer Eingriffe. Als Nachteile sind unter ökonomischen Gesichtspunkten u. a. die hohen Anschaffungskosten anzuführen.

Abstract

Background

Navigation systems are supposed to increase precision and support surgeons while they perform certain interventions. 2D, or nowadays 3D, systems are used in image-based approaches. Image-free navigation uses 3D printing.

Indications

There are several studies on navigation procedures in trauma surgery. In contrast to limb surgery, the use of 3D navigation in pelvic and spine surgery is already well established. Navigation is especially regularly used to treat fractures of the posterior pelvic ring and for posterior stabilization of the cervical spine.

Requirements

To be able to utilize navigation systems optimally, the learning curve should be completed, and the technique should be used regularly. In addition, the surgeon should know the surgical technique without navigation in order to recognize potential errors of the navigation.

Advantages and disadvantages

Advantages include increased patient safety, reduction in radiation exposure and less invasive surgical procedures. However, among other disadvantages, initial costs are high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

BV:

Bildverstärker

CAOS :

„Computer-assisted orthopaedic surgery“

DRG :

Diagnosis Related Groups

DVT :

Digitale Volumentomographie

HWS :

Halswirbelsäule

IS :

Iliosakral

VKB :

Vorderes Kreuzband

Literatur

  1. Alluri RK, Avrumova F, Sivaganesan A, Vaishnav AS, Lebl DR, Qureshi SA (2021) Overview of Robotic Technology in Spine Surgery. HSS J 17(3):308–316. https://doi.org/10.1177/15563316211026647

    Article  PubMed  PubMed Central  Google Scholar 

  2. Amiot LP, Labelle H, DeGuise JA, Sati M, Brodeur P, Rivard CH (1995) Computer-assisted pedicle screw fixation. A feasibility study. Spine (Phila Pa 1976) 20(10):1208–1212. https://doi.org/10.1097/00007632-199505150-00019

  3. Arand M, Kinzl L, Gebhard F (2004) Computer-guidance in percutaneous screw stabilization of the iliosacral joint. Clin Orthop Relat Res 42(2):201–207. https://doi.org/10.1097/01.blo.0000128644.46013.08

    Article  Google Scholar 

  4. Bruns N, Krettek C (2019) 3D-Druck in der Unfallchirurgie. Planung, Druck und Aufbereitung. Unfallchirurg 122(4):270–277. https://doi.org/10.1007/s00113-019-0625-9

  5. Cheng T, Zhang G‑Y, Zhang X‑L (2012) Does computer navigation system really improve early clinical outcomes after anterior cruciate ligament reconstruction? A meta-analysis and systematic review of randomized controlled trials. Knee 19(2):73–77. https://doi.org/10.1016/j.knee.2011.02.011

    Article  PubMed  Google Scholar 

  6. Chui KH, Chan CCD, Ip KC, Lee KB, Li W (2018) Three-dimensional navigation-guided percutaneous screw fixation for nondisplaced and displaced pelvi-acetabular fractures in a major trauma centre. Int Orthop 42(6):1387–1395. https://doi.org/10.1007/s00264-017-3659-z

    Article  PubMed  Google Scholar 

  7. Dea N, Fisher CG, Batke J, Strelzow J, Mendelsohn D, Paquette SJ, Kwon BK, Boyd MD, Dvorak MFS, Street JT (2016) Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws. A patient-level data cost-effectiveness analysis. Spine J 16(1):23–31. https://doi.org/10.1016/j.spinee.2015.09.062

    Article  PubMed  Google Scholar 

  8. Dessenne V, Lavallée S, Julliard R, Orti R, Martelli S, Cinquin P (1995) Computer-assisted knee anterior cruciate ligament reconstruction. First clinical tests. J Image Guid Surg 1(1):59–64

    Article  CAS  Google Scholar 

  9. Dewey P, Incoll I (1998) Evaluation of thyroid shields for reduction of radiation exposure to orthopaedic surgeons. Aust N Z J Surg 68(9):635–636. https://doi.org/10.1111/j.1445-2197.1998.tb04832.x

    Article  CAS  PubMed  Google Scholar 

  10. Fichtner J, Hofmann N, Rienmüller A, Buchmann N, Gempt J, Kirschke JS, Ringel F, Meyer B, Ryang Y‑M (2018) Revision Rate of Misplaced Pedicle Screws of the Thoracolumbar Spine-Comparison of Three-Dimensional Fluoroscopy Navigation with Freehand Placement. A Systematic Analysis and Review of the Literature. World Neurosurg 109:e24–e32. https://doi.org/10.1016/j.wneu.2017.09.091

    Article  PubMed  Google Scholar 

  11. Hamid KS, Parekh SG, Adams SB (2016) Salvage of Severe Foot and Ankle Trauma With a 3D Printed Scaffold. Foot Ankle Int 37(4):433–439. https://doi.org/10.1177/1071100715620895

    Article  PubMed  Google Scholar 

  12. Hawi N, Liodakis E, Suero EM, Stuebig T, Citak M, Krettek C (2014) Radiological outcome and intraoperative evaluation of a computer-navigation system for femoral nailing. A retrospective cohort study. Injury 45(10):1632–1636. https://doi.org/10.1016/j.injury.2014.05.039

    Article  PubMed  Google Scholar 

  13. Hofstetter R, Slomczykowski M, Krettek C, Kppen G, Sati M, Nolte L‑P (2000) Computer-assisted fluoroscopy-based reduction of femoral fractures and antetorsion correction. Computer Aided Surgery 5(5):311–325. https://doi.org/10.1002/1097-0150(2000)5:5〈311::AID-IGS1〉3.0.CO;2‑J

  14. Hüfner T, Stübig T, Gösling T, Kendoff D, Geerling J, Krettek C (2007) Kosten- und Nutzenanalyse der intraoperativen 3D-Bildgebung. Unfallchirurg 110(1):14–21. https://doi.org/10.1007/s00113-006-1202-6

    Article  PubMed  Google Scholar 

  15. Jenny J‑Y (2006) Geschichte und Entwicklung der computerassistierten Chirurgie in der Orthopädie. Orthopade 35(10):1038–1042. https://doi.org/10.1007/s00132-006-0994-y

    Article  PubMed  Google Scholar 

  16. Kendoff D, Geerling J, Mahlke L, Citak M, Kfuri M, Hüfner T, Krettek C (2003) Navigierte Iso-C(3D)-basierte Anbohrung einer osteochondralen Läsion des Talus. Unfallchirurg 106(11):963–967. https://doi.org/10.1007/s00113-003-0682-x

    Article  CAS  PubMed  Google Scholar 

  17. Kothe R, Rüther W, Schneider E, Linke B (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine (Phila Pa 1976) 29(17):1869–1875. https://doi.org/10.1097/01.brs.0000137287.67388.0b

  18. Kothe R, Richter M (2018) Relevanz der spinalen Navigation in der rekonstruktiven Halswirbelsäulenchirurgie. Orthopade 47(6):518–525. https://doi.org/10.1007/s00132-018-3568-x

    Article  CAS  PubMed  Google Scholar 

  19. Krettek C, Bruns N (2019) Aktueller Stand und neue Entwicklungen des 3D-Drucks in der. Unfallchirurgie Unfallchirurg 122(4):256–269. https://doi.org/10.1007/s00113-019-0636-6

    Article  CAS  Google Scholar 

  20. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance. A randomised controlled clinical study in 100 consecutive patients. Eur Spine J 9(3):235–240. https://doi.org/10.1007/s005860000146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lass R, Kubista B, Olischar B, Frantal S, Windhager R, Giurea A (2014) Total hip arthroplasty using imageless computer-assisted hip navigation. A prospective randomized study. J Arthroplasty 29(4):786–791. https://doi.org/10.1016/j.arth.2013.08.020

  22. Lavallée S, Sautot P, Troccaz J, Cinquin P, Merloz P (1995) Computer-Assisted Spine Surgery. A Technique for Accurate Transpedicular Screw Fixation Using CT Data and a 3‑D Optical Localizer. Comput Aided Surg 1(1):65–73. https://doi.org/10.3109/10929089509106828

    Article  Google Scholar 

  23. Li H‑M, Zhang R‑J, Shen C‑L (2020) Accuracy of Pedicle Screw Placement and Clinical Outcomes of Robot-assisted Technique Versus Conventional Freehand Technique in Spine Surgery From Nine Randomized Controlled Trials. A Meta-analysis. Spine (Phila Pa 1976) 45(2):E111–E119. https://doi.org/10.1097/BRS.0000000000003193

  24. Lu S, Yang K, Lu C, P’o WGZ, Zhu Z, Tan H (2021) O‑arm navigation for sacroiliac screw placement in the treatment for posterior pelvic ring injury. Int Orthop 45(7):1803–1810. https://doi.org/10.1007/s00264-020-04832-2

    Article  PubMed  Google Scholar 

  25. Mastrangelo G, Fedeli U, Fadda E, Giovanazzi A, Scoizzato L, Saia B (2005) Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (lond) 55(6):498–500. https://doi.org/10.1093/occmed/kqi048

    Article  Google Scholar 

  26. Matityahu A, Kahler D, Krettek C, Stöckle U, Grutzner PA, Messmer P, Ljungqvist J, Gebhard F (2014) Three-dimensional navigation is more accurate than two-dimensional navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum. A randomized multicenter study. J Orthop Trauma 28(12):707–710. https://doi.org/10.1097/BOT.0000000000000092

  27. Mendelsohn D, Strelzow J, Dea N, Ford NL, Batke J, Pennington A, Yang K, Ailon T, Boyd M, Dvorak M, Kwon B, Paquette S, Fisher C, Street J (2016) Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J 16(3):343–354. https://doi.org/10.1016/j.spinee.2015.11.020

    Article  PubMed  Google Scholar 

  28. Meyer H, Ryang Y‑M (2019) Spinale Navigation – Evidenz. Einsatz der Navigation in der Wirbelsäulenchirurgie. Die Wirbelsäule 03(01):28–36. https://doi.org/10.1055/a-0734-5265

    Article  Google Scholar 

  29. Mezger U, Jendrewski C, Bartels M (2013) Navigation in surgery. Langenbecks Arch Surg 398(4):501–514. https://doi.org/10.1007/s00423-013-1059-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Murakami T, Yamazaki K, Ogasa H (2021) ADAPT system is a dramatic advance in computer-assisted surgery for femoral trochanteric fractures. SICOT J 7:55. https://doi.org/10.1051/sicotj/2021056

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nolte LP, Zamorano LJ, Jiang Z, Wang Q, Langlotz F, Berlemann U (1995) Image-guided insertion of transpedicular screws. A laboratory set-up. Spine (Phila Pa 1976) 20(4):497–500. https://doi.org/10.1097/00007632-199502001-00016

  32. Overley SC, Cho SK, Mehta AI, Arnold PM (2017) Navigation and Robotics in Spinal Surgery. Where Are We Now? Neurosurgery 80(3):S86–S99. https://doi.org/10.1093/neuros/nyw077

    Article  PubMed  Google Scholar 

  33. Plaweski S, Cazal J, Rosell P, Merloz P (2006) Anterior cruciate ligament reconstruction using navigation. A comparative study on 60 patients. Am J Sports Med 34(4):542–552. https://doi.org/10.1177/0363546505281799

  34. Rajasekaran S, Vidyadhara S, Ramesh P, Shetty AP (2007) Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine (Phila Pa 1976) 32(2):E56–64. https://doi.org/10.1097/01.brs.0000252094.64857.ab

  35. Schmidt R, Wilke H‑J, Claes L, Puhl W, Richter M (2003) Pedicle screws enhance primary stability in multilevel cervical corpectomies. Biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instumentations. Spine (Phila Pa 1976) 28(16):1821–1828. https://doi.org/10.1097/01.BRS.0000083287.23521.48

  36. Shin BJ, James AR, Njoku IU, Härtl R (2012) Pedicle screw navigation. A systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17(2):113–122. https://doi.org/10.3171/2012.5.SPINE11399

    Article  PubMed  Google Scholar 

  37. Sommer F (2019) Evaluation eines neuen Navigationssystems zur Implantation eines proximalen Femurnagels – eine randomisierte Kontrollstudie. Dissertation, Ludwig-Maximilians-Universität

    Google Scholar 

  38. Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A (2003) Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 85(6):830–835

    Article  CAS  Google Scholar 

  39. Stübig T, Windhagen H, Krettek C, Ettinger M (2020) Computer-Assisted Orthopedic and Trauma Surgery. Dtsch Arztebl Int 117(47):793–800. https://doi.org/10.3238/arztebl.2020.0793

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tian W, Zeng C, An Y, Wang C, Liu Y, Li J (2017) Accuracy and postoperative assessment of pedicle screw placement during scoliosis surgery with computer-assisted navigation. A meta-analysis. Int J Med Robot. https://doi.org/10.1002/rcs.1732

    Article  PubMed  Google Scholar 

  41. Villard J, Ryang Y‑M, Demetriades AK, Reinke A, Behr M, Preuss A, Meyer B, Ringel F (2014) Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation. A prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine (Phila Pa 1976) 39(13):1004–1009. https://doi.org/10.1097/BRS.0000000000000351

  42. Weil YA, Greenberg A, Khoury A, Mosheiff R, Liebergall M (2014) Computerized navigation for length and rotation control in femoral fractures. A preliminary clinical study. J Orthop Trauma 28(2):e27–33. https://doi.org/10.1097/BOT.0b013e31829aaefb

  43. Wendl K, von Recum J, Wentzensen A, Grützner PA (2003) Iso-C(3D)-gestützte navigierte Implantation von Pedikelschrauben an BWS und LWS. Unfallchirurg 106(11):907–913. https://doi.org/10.1007/s00113-003-0683-9

    Article  CAS  PubMed  Google Scholar 

  44. Wilharm A, Gras F, Rausch S, Linder R, Marintschev I, Hofmann GO, Mückley T (2011) Navigation in femoral-shaft fractures—from lab tests to clinical routine. Injury 42(11):1346–1352. https://doi.org/10.1016/j.injury.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  45. Wong JM‑L, Bewsher S, Yew J, Bucknill A, de Steiger R (2015) Fluoroscopically assisted computer navigation enables accurate percutaneous screw placement for pelvic and acetabular fracture fixation. Injury 46(6):1064–1068. https://doi.org/10.1016/j.injury.2015.01.038

    Article  PubMed  Google Scholar 

  46. Yu T, Cheng X‑L, Qu Y, Dong R‑P, Kang M‑Y, Zhao J‑W (2020) Computer navigation-assisted minimally invasive percutaneous screw placement for pelvic fractures. World J Clin Cases 8(12):2464–2472. https://doi.org/10.12998/wjcc.v8.i12.2464

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Zheng G, Langlotz F, Nolte L‑P (2006) Assessment of spline-based 2D-3D registration for image-guided spine surgery. Minim Invasive Ther Allied Technol 15(3):193–199. https://doi.org/10.1080/13645700600769474

    Article  CAS  PubMed  Google Scholar 

  48. Zwingmann J, Hauschild O, Bode G, Südkamp NP, Schmal H (2013) Malposition and revision rates of different imaging modalities for percutaneous iliosacral screw fixation following pelvic fractures. A systematic review and meta-analysis. Arch Orthop Trauma Surg 133(9):1257–1265. https://doi.org/10.1007/s00402-013-1788-4

    Article  PubMed  Google Scholar 

  49. Bäthis, P. Kappel; T. Pfeiffer et al. (2022) Gibt es noch Gründe für die Navigation in der Knie-Endoprothetik? https://doi.org/10.1007/s00132-022-04285-y, in diesem Heft

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Stübig.

Ethics declarations

Interessenkonflikt

S. Oberthür, S. Sehmisch, L. Weiser, L. Viezens und T. Stübig geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberthür, S., Sehmisch, S., Weiser, L. et al. Hat die Navigation in der Traumatologie noch einen Stellenwert?. Orthopädie 51, 719–726 (2022). https://doi.org/10.1007/s00132-022-04288-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-022-04288-9

Schlüsselwörter

Keywords

Navigation