Skip to main content
Log in

Biochar-Stimulated Pumpkin Performance Under Cadmium Stress Is Strongly Linked to Metabolite Pattern

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In this study, pumpkin seedlings were subjected to cadmium stress (100 mg/L cadmium ion solution, 10 days) without or with wheat straw biochar at different concentrations (0%, 0.5%, 1%, and 2% w/v). As the biochar concentration increased, the amount of cadmium accumulated in the root and stem of pumpkin seedlings decreased and the fresh weight of root, stem and leaf increased. The highest cadmium concentration was in the root, followed by the stem and then the leaf. 1% and 2% biochar treatments reduced the oxidative stress of cadmium to seedlings, and added the contents of fatty acid, carbohydrate, amino acid and indoleacetic acid in the root. With the increase of biochar concentration, the metabolites promoting root growth increased. These results provide new information about how biochar alleviates cadmium stress by affecting the metabolic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas T, Rizwan M, Ali S et al (2017) Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol Environ Saf 140:37–47

    Article  CAS  Google Scholar 

  • Arshad M, Khan AHA, Hussain I et al (2017) The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Appl Soil Ecol 114:90–98

    Article  Google Scholar 

  • Azmat R, Zill-e-Huma, Hayat A et al (2005) The inhibition of bean plant metabolism by cadmium metal: I effect of Cd metal on physiological process of bean plant and Rhizobium species. Pak J Biol Sci 8:401–404

    Article  Google Scholar 

  • Belkadhi A, Haro AD, Obregon S et al (2015) Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress. Environ Sci Pollut Res 22:1457–1467

    Article  CAS  Google Scholar 

  • Carreño-Carrillo CV, Sánchez EV, Verduzco CV et al (2021) Polyphenol-based nuclear magnetic resonance non-targeted metabolomics of temperature- and time-controlled blue and red maize sprouting. SN App Sci 3:300

    Article  Google Scholar 

  • Chen HB, Yang X, Gielen G et al (2019) Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to Brassica chinensis L. in contaminated soils. Sci Total Environ 678:43–52

    Article  CAS  Google Scholar 

  • Dai H, Wei S, Pogrzeba M et al (2021) The cadmium accumulation differences of two Bidens pilosa L. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices. Ecotoxicol Environ Saf 209:111847

    Article  CAS  Google Scholar 

  • Fang Z, Chen Z, Wang S et al (2017) Overexpression of OLE1 enhances cytoplasmic membrane stability and confers resistance to cadmium in Saccharomyces cerevisiae. Appl Environ Microb 83(1):e02319-e2416

    Article  CAS  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2018) Biochar increased plant growth-promoting hormones and helped to alleviates salt stress in common bean seedlings. J Plant Growth Regul 37(2):591–601

    Article  CAS  Google Scholar 

  • Ferreira MMADAS, Santos JAG, Moura SC et al (2016) Cadmium effects on sunflower growth and mineral nutrition. Afr J Agric Res 11(37):3488–3496

    Article  CAS  Google Scholar 

  • Guo L, Chen K, Sun M et al (2021) Metabonomics: a useful tool to reveal underlying relationships between altered chinese medicine syndromes and ultrafiltration in treatment of heart failure. Chin J Integr Med 27(4):259–264

    Article  CAS  Google Scholar 

  • Haider FU, Cai L, Coulter JA et al (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887

    Article  CAS  Google Scholar 

  • Han T, Zhao Z, Bartlam M et al (2016) Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. Environ Sci Pollut Res 23:21219–21228

    Article  CAS  Google Scholar 

  • Han T, Liang Y, Wu Z et al (2019) Effects of tetracycline on growth, oxidative stress response, and metabolite pattern of ryegrass. J Hazard Mater 380:120885

    Article  CAS  Google Scholar 

  • Han T, Wang B, Wu Z et al (2021a) Providing a view for toxicity mechanism of tetracycline by analysis of the connections between metabolites and biologic endpoints of wheat. Ecotoxicol Environ Saf 212:111998

    Article  CAS  Google Scholar 

  • Han T, Sun M, Zhao J et al (2021b) The roles of cadmium on growth of seedlings by analysing the composition of metabolites in pumpkin tissues. Ecotoxicol Environ Saf 226:112817

    Article  CAS  Google Scholar 

  • He H, Pan J, Yu P et al (2017) Effects of hybrid giant napier biochar on cadmium migration in a cabbage-soil system contaminated with cadmium and butachlor. Pol J Environ Stud 26(2):619–625

    Article  CAS  Google Scholar 

  • Ijaz M, Rizwan MS, Sarfraz M et al (2020) Biochar reduced cadmium uptake and enhanced wheat productivity in alkaline contaminated soil. Intl J Agric Biol 24(6):1633–1640

    CAS  Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM et al (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158

    Article  CAS  Google Scholar 

  • Liu S, Wang W, Li M et al (2017) Antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut. Acta Physiol Plant 39:207

    Article  CAS  Google Scholar 

  • Liu J, Liu Y, Lin H et al (2021) The effect of ginsenoside Rg5, isolated from black ginseng, on heart failure in zebrafish based on untargeted metabolomics. J Funct Foods 76:104325

    Article  CAS  Google Scholar 

  • Mortimer M, Kasemets K, Vodovnik M et al (2011) Exposure to CuO nanoparticles changes the fatty acid composition of protozoa Tetrahymena thermophile. Environ Sci Technol 45:6617–6624

    Article  CAS  Google Scholar 

  • Naeem MA, Imran M, Amjad M et al (2019) Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar. Water 11(7):1438

    Article  CAS  Google Scholar 

  • Nawaz MA, Chen C, Shireen F et al (2018) Improving vanadium stress tolerance of watermelon by grafting onto bottle gourd and pumpkin rootstock. Plant Growth Regul 85:41–56

    Article  CAS  Google Scholar 

  • Nigam N, Khare P, Yadav V et al (2019) Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. Ecotoxicol Environ Saf 172:411–422

    Article  CAS  Google Scholar 

  • Nonomura T, Matsuda Y, Shiratori S et al (2001) Effects of indole derivatives on the growth of Chlamydomonas spp. as causal green algae in the hydroponics system. Environ Control Biol 39(2):127–134

    Article  Google Scholar 

  • Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat. Ann Bot 96:425–434

    Article  CAS  Google Scholar 

  • Rahman SU, Qi X, Zhao Z et al (2021) Alleviatory effects of silicon on the morphology, physiology, and antioxidative mechanisms of wheat (Triticum aestivum L.) roots under cadmium stress in acidic nutrient solutions. Sci Rep 11:1958

    Article  Google Scholar 

  • Sakhanokho HF, Ozias-Akins P, May OL et al (2005) Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton. Plant Cell Tiss Org 81:91–95

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S et al (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  Google Scholar 

  • Song G, Gao Y, Wu H et al (2012) Physiological effect of anatase TiO2 nanoparticles on lemna minor. Environ Toxicol Chem 31:2147–2152

    Article  CAS  Google Scholar 

  • Su Y, Li L, Farooq MU et al (2021) Rescue effects of Se-enriched rice on physiological and biochemical characteristics in cadmium poisoning mice. Environ Sci Pollut Res 28(16):20023–20033

    Article  CAS  Google Scholar 

  • Wang R, Fu W, Wang J et al (2019) Application of rice grain husk derived biochar in ameliorating toxicity impacts of Cu and Zn on growth, physiology and enzymatic functioning of wheat seedlings. Bull Environ Contam Toxicol 103:636–641

    Article  CAS  Google Scholar 

  • Xu D, Zhao Y, Zhou H et al (2016) Effects of biochar amendment on relieving cadmium stress and reducing cadmium accumulation in pepper. Environ Sci Pollut Res 23:12323–12331

    Article  Google Scholar 

  • Yang E, Meng J, Hu HJ et al (2019) Effects of organic molecules from biochar-extracted liquor on the growth of rice seedlings. Ecotoxicol Environ Saf 170:338–345

    Article  CAS  Google Scholar 

  • Ye LY, Wu Q, Shui DJ et al (2018) Effects of biochar on seed germination and seedlings of turnip under copper stress. Northern Hortic 08:59–63 (in Chinese with English abstract)

    Google Scholar 

  • Youssef NB, Nouairi I, Temime SB et al (2005) Cadmium effects on lipid metabolism of rape (Brassica napus L.). C R Biol 328(8):745–757

    Article  Google Scholar 

  • Zhang H, Guo Q, Yang J et al (2015) Subcellular cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation. Ecotoxicol Environ Saf 120:184–192

    Article  CAS  Google Scholar 

  • Zhang XL, Xia ML, Su XJ et al (2021) Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J Hazard Mater 413:125321

    Article  CAS  Google Scholar 

  • Zhu Y, Wang H, Lv X et al (2020) Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Sci Rep 10:20112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Postdoctoral Research Grant in Henan Province (202001040), Major Science and Technology Special Project of Henan Province (201300111300) and Key R&D and Promotion Special Project of Henan Province (212102110437, 202102110051, 202102110054). The authors thank Jennifer Smith, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaorong Mi or Xinyu Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Shen, J., Dai, C. et al. Biochar-Stimulated Pumpkin Performance Under Cadmium Stress Is Strongly Linked to Metabolite Pattern. Bull Environ Contam Toxicol 108, 1132–1138 (2022). https://doi.org/10.1007/s00128-022-03532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-022-03532-4

Keywords

Navigation