Skip to main content

Advertisement

Log in

Sensitive Techniques for POCT Sensing on the Residues of Pesticides and Veterinary Drugs in Food

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

For the immense requirement on agriculture and animal husbandry, application of pesticides and veterinary drugs had become a normal state in the farming and ranching areas. However, to intently pursue the yields, large quantities of residues of pesticides and veterinary drugs have caused serious harm to both the environment and the food industry. To control and solve such an issue, a variety of novel techniques were developed in recent years. In this review, the development and features about point-of-care-testing (POCT) detection on the residues of pesticides and veterinary drugs, such as, electrochemistry (EC), enzyme-linked immunosorbent assay (ELISA) and nano-techniques, were systematically introduced. For each topic, we first interpreted the strategies and detailed account of such technical contributions on detection and assessment of the residues. Finally, the advantages and perspectives about mentioned techniques for ultrasensitive assessment and sensing on pesticides and veterinary drugs were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

reproduced from Food and Agriculture Organization of the United Nations (https://www.fao.org/faostat/en/#data/RP). Note: The pesticides as illustrated in Fig. 1 including the data of major pesticide groups (Insecticides, Herbicides, Fungicides, Plant growth regulators and Rodenticides) and of relevant chemical families. Data report the quantities (in tonnes) of pesticides used in or sold to the agricultural sector for crops and seeds

Fig. 2

Reproduced from Suginta et al. (2013)

Fig. 3

Reproduced from Cohen and Walt (2019)

Fig. 4

Reproduced from Lee et al. (2018)

Similar content being viewed by others

References

  • Akyüz D, Keleş T, Biyiklioglu Z, Koca A (2017) Metallophthalocyanines Bearing Polymerizable [5-({(1E)-[4-(Diethylamino)phenyl]methylene}amino)- 1-naphthy1]oxy Groups as Electrochemical Pesticide Sensor. Electroanalysis 29(12):2913–2924

    Article  CAS  Google Scholar 

  • Alavanja MC, Ross MK, Bonner MR (2013) Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J Clin 63(2):120–142

    Article  Google Scholar 

  • Alder L, Greulich K, Kempe G, Vieth B (2006) Residue analysis of 500 high priority pesticides: better by GC-MS or LC-MS/MS? Mass Spectrom Rev 25(6):838–865

    Article  CAS  Google Scholar 

  • Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of Graphene and Related Materials. Chem Rev 114(14):7150–7188

    Article  CAS  Google Scholar 

  • Aragay G, Pino F, Merkoci A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112(10):5317–5338

    Article  CAS  Google Scholar 

  • Bartikova H, Podlipna R, Skalova L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301

    Article  CAS  Google Scholar 

  • Atar N, Eren T, Yola ML (2015) A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice. Food Chem 184:7–11

    Article  CAS  Google Scholar 

  • Baghani A, Mesdaghinia A, Rafieiyan M, Soltan Dallal MM, Douraghi M (2019) Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA. J Immunoassay Immunochem 40(3):328–342

    Article  CAS  Google Scholar 

  • Bovee TF, Heskamp HH, Helsdingen RJ, Hamers AR, Brouwer BA, Nielen MW (2013) Validation of a recombinant cell bioassay for the detection of (gluco)corticosteroids in feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(2):264–271

    Article  CAS  Google Scholar 

  • Cecchi A, Rovedatti MG, Sabino G, Magnarelli GG (2012) Environmental exposure to organophosphate pesticides: Assessment of endocrine disruption and hepatotoxicity in pregnant women. Ecotoxicol Environ Saf 80:280–287

    Article  CAS  Google Scholar 

  • Cohen L, Walt DR (2019) Highly Sensitive and Multiplexed Protein Measurements. Chem Rev 119(1):293–321

    Article  CAS  Google Scholar 

  • Conzuelo F, Ruiz-Valdepenas Montiel V, Campuzano S, Gamella M, Torrente-Rodriguez RM, Reviejo AJ, Pingarron JM (2014) Rapid screening of multiple antibiotic residues in milk using disposable amperometric magnetosensors. Anal Chim Acta 820:32–38

    Article  CAS  Google Scholar 

  • Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Protection 26(9):1337–1348

    Article  CAS  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8(5):1402–1419

    Article  CAS  Google Scholar 

  • Deroco PB, Rocha-Filho RC, Fatibello-Filho O (2018) A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta 179:115–123

    Article  CAS  Google Scholar 

  • Ding G, Bao Y (2014) Revisiting pesticide exposure and children’s health: focus on China. Sci Total Environ 472:289–295

    Article  CAS  Google Scholar 

  • Du BY, Wen F, Guo XD, Zheng N, Zhang YD, Li SL, Zhao SG, Liu HM, Meng L, Xu QB, Li M, Li FD, Wang JQ (2019) Evaluation of an ELISA-based visualization microarray chip technique for the detection of veterinary antibiotics in milk. Food Control 106.

  • Eissa S, Zourob M (2017) Selection and Characterization of DNA Aptamers for Electrochemical Biosensing of Carbendazim. Anal Chem 89(5):3138–3145

    Article  CAS  Google Scholar 

  • Farka Z, Jurik T, Kovar D, Trnkova L, Skladal P (2017) Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 117(15):9973–10042

    Article  CAS  Google Scholar 

  • Gabaldón JA, Maquieira A, Puchades R (1999) Current trends in immunoassay-based kits for pesticide analysis. Crit Rev Food Sci Nutr 39(6):519–538

    Article  Google Scholar 

  • Geto A, Noori JS, Mortensen J, Svendsen WE, Dimaki M (2019) Electrochemical determination of bentazone using simple screen-printed carbon electrodes. Environ Int 129:400–407

    Article  CAS  Google Scholar 

  • Gouzy MF, Kess M, Kramer PM (2009) A SPR-based immunosensor for the detection of isoproturon. Biosens Bioelectron 24(6):1563–1568

    Article  CAS  Google Scholar 

  • Hirakawa Y, Yamasaki T, Harada A, Iwasa S, Narita H, Miyake S (2018) Development of an Immunosensor Based on Surface Plasmon Resonance for Simultaneous Residue Analysis of Three Pesticides -Boscalid, Clothianidin, and Nitenpyram- in Vegetables. Anal Sci 34(5):533–539

    Article  CAS  Google Scholar 

  • Hoa XD, Kirk AG, Tabrizian M (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron 23(2):151–160

    Article  CAS  Google Scholar 

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  • Jimenez V, Adrian J, Guiteras J, Marco MP, Companyo R (2010) Validation of an enzyme-linked immunosorbent assay for detecting sulfonamides in feed resources. J Agric Food Chem 58(13):7526–7531

    Article  CAS  Google Scholar 

  • Juan C, Igualada C, Moragues F, Leon N, Manes J (2010) Development and validation of a liquid chromatography tandem mass spectrometry method for the analysis of beta-agonists in animal feed and drinking water. J Chromatogr A 1217(39):6061–6068

    Article  CAS  Google Scholar 

  • Khairy M, Ayoub HA, Banks CE (2018) Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem 255:104–111

    Article  CAS  Google Scholar 

  • Lee KS, Park SH, Won SY, Shim YB (2009) Electrophoretic total analysis of trace tetracycline antibiotics in a microchip with amperometry. Electrophoresis 30(18):3219–3227

    Article  CAS  Google Scholar 

  • Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI (2018) Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 118(11):5392–5487

    Article  CAS  Google Scholar 

  • Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A 1217(16):2548–2560

    Article  CAS  Google Scholar 

  • Li C, Zhang Y, Eremin SA, Yakup O, Yao G, Zhang X (2017) Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA. Food Chem 227:48–54

    Article  CAS  Google Scholar 

  • Li H, Cai H-Y, Chen X, Sun J-H, Zhang L-L, Cui D-F (2010) Continuous Immunoassay for Sulfamethazine by Surface Plasmon Resonance-Based Biosensor. Anal Lett 43(3):499–507

    Article  CAS  Google Scholar 

  • Li X, Yang T, Song Y, Zhu J, Wang D, Li W (2019) Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sensors and Actuators B: Chemical 283:230–238

    Article  CAS  Google Scholar 

  • Liang G, Liu X (2015) G-quadruplex based impedimetric 2-hydroxyfluorene biosensor using hemin as a peroxidase enzyme mimic. Microchim Acta 182(13–14):2233–2240

    Article  CAS  Google Scholar 

  • Liu X, Hu M, Wang M, Song Y, Zhou N, He L, Zhang Z (2019) Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 123:59–68

    Article  CAS  Google Scholar 

  • Lopes RP, de Freitas Passos ÉE, de Alkimim Filho JF, Vargas EA, Augusti DV, Augusti R (2012) Development and validation of a method for the determination of sulfonamides in animal feed by modified QuEChERS and LC–MS/MS analysis. Food Control 28(1):192–198

    Article  CAS  Google Scholar 

  • Mainero Rocca L, Gentili A, Perez-Fernandez V, Tomai P (2017) Veterinary drugs residues: a review of the latest analytical research on sample preparation and LC-MS based methods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34(5):766–784

    CAS  Google Scholar 

  • Mishra RK, Hubble LJ, Martín A, Kumar R, Barfidokht A, Kim J, Musameh MM, Kyratzis IL, Wang J (2017) Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens 2(4):553–561

    Article  CAS  Google Scholar 

  • Pastor-Navarro N, Maquieira A, Puchades R (2009) Review on immunoanalytical determination of tetracycline and sulfonamide residues in edible products. Anal Bioanal Chem 395(4):907–920

    Article  CAS  Google Scholar 

  • Sack C, Smoker M, Chamkasem N, Thompson R, Satterfield G, Masse C, Mercer G, Neuhaus B, Cassias I, Chang E, Lin Y, Macmahon S, Wong J, Zhang K, Smith RE (2011) Collaborative validation of the QuEChERS procedure for the determination of pesticides in food by LC-MS/MS. J Agric Food Chem 59(12):6383–6411

    Article  CAS  Google Scholar 

  • Sari E, Uzek R, Duman M, Denizli A (2018) Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites. J Biomater Sci Polym Ed 29(11):1302–1318

    Article  CAS  Google Scholar 

  • Shen YD, Xu ZL, Zhang SW, Wang H, Yang JY, Lei HT, Xiao ZL, Sun YM (2012) Development of a monoclonal antibody-based competitive indirect enzyme-linked immunosorbent assay for furaltadone metabolite AMOZ in fish and shrimp samples. J Agric Food Chem 60(44):10991–10997

    Article  CAS  Google Scholar 

  • Sergiy Mayilo MAK, Wunderlich M, Lutich A, Klar TA (2009) Long-Range Fluorescence Quenching byGold Nanoparticles in a SandwichImmunoassay for Cardiac Troponin T. Nano Lett 9(12):4558–4563

    Article  CAS  Google Scholar 

  • Shu Q, Wang L, Ouyang H, Wang W, Liu F, Fu Z (2017) Multiplexed immunochromatographic test strip for time-resolved chemiluminescent detection of pesticide residues using a bifunctional antibody. Biosens Bioelectron 87:908–914

    Article  CAS  Google Scholar 

  • Song S, Zhu K, Han L, Sapozhnikova Y, Zhang Z, Yao W (2018) Residue Analysis of 60 Pesticides in Red Swamp Crayfish Using QuEChERS with High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J Agric Food Chem 66(20):5031–5038

    Article  CAS  Google Scholar 

  • Sternesjo A, Mellgren C, Bjorck L (1995) Determination of Sulfamethazine Residues in Milk by a Surface-Plasmon Resonance-Based Biosensor Assay. Anal Biochem 226(1):175–181

    Article  CAS  Google Scholar 

  • Suginta W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113(7):5458–5479

    Article  CAS  Google Scholar 

  • Sun S, Hu R, Zhang C, Shi G (2019) Do farmers misuse pesticides in crop production in China? Evidence from a farm household survey. Pest Manag Sci 75(8):2133–2141

    Article  CAS  Google Scholar 

  • Toldra F, Reig M (2006) Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends Food Sci Technol 17(9):482–489

    Article  CAS  Google Scholar 

  • Tuck S, Furey A, Crooks S, Danaher M (2018) A review of methodology for the analysis of pyrethrin and pyrethroid residues in food of animal origin. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35(5):911–940

    Article  CAS  Google Scholar 

  • Vilela D, Gonzalez MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review Anal Chim Acta 751:24–43

    Article  CAS  Google Scholar 

  • Wang C, Li X, Peng T, Wang Z, Wen K, Jiang H (2017) Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control 77:1–7

    Article  CAS  Google Scholar 

  • Watanabe EM (2018) Direct determination of neonicotinoid insecticides in an analytically challenging crop such as Chinese chives using selective ELISAs. J Environ Sci Heal B 53(11):707–712

    Article  CAS  Google Scholar 

  • Wongkaew N, Simsek M, Griesche C, Baeumner AJ (2019) Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem Rev 119(1):120–194

    Article  CAS  Google Scholar 

  • Xiang L, Wu H, Cui Z, Tang J (2019) Indirect Competitive Aptamer-Based Enzyme-Linked Immunosorbent Assay (apt-ELISA) for the Specific and Sensitive Detection of Isocarbophos Residues. Anal Lett 52(12):1966–1975

    Article  CAS  Google Scholar 

  • Xu T, Xu QG, Li H, Wang J, Li QX, Shelver WL, Li J (2012) Strip-based immunoassay for the simultaneous detection of the neonicotinoid insecticides imidacloprid and thiamethoxam in agricultural products. Talanta 101:85–90

    Article  CAS  Google Scholar 

  • Xu XY, Yan B, Lian X (2018) Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. Nanoscale 10(28):13722–13729

    Article  CAS  Google Scholar 

  • Zhang C, Guanming S, Shen J, Hu R-f (2015) Productivity effect and overuse of pesticide in crop production in China. Journal of Integrative Agriculture 14(9):1903–1910

    Article  CAS  Google Scholar 

  • Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249

    Article  CAS  Google Scholar 

  • Zhu FF, Peng J, Huang Z, Hu LM, Zhang GG, Liu DF, Xing KY, Zhang KY, Lai WH (2018) Specific colorimetric ELISA method based on DNA hybridization reaction and non-crosslinking gold nanoparticles aggregation for the detection of amantadine. Food Chem 257:382–387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.P. thanks for the support from National Natural Science Foundation of China (No. 21603087), Natural Science Foundation of Jiangsu Province (No. BK20160178), Young Professionals of “Thousand Talents Plan” project, and “Lv Yang Jin Feng” project of Yangzhou City (Jiangsu, China). Also, this work was financially supported by the Innovation and Entrepreneurship Projects and Six Talent Peaks Project of Jiangsu Province (No. SWYY-023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuwei Pi or Xiulan Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Gao, Y., Liu, J. et al. Sensitive Techniques for POCT Sensing on the Residues of Pesticides and Veterinary Drugs in Food. Bull Environ Contam Toxicol 107, 206–214 (2021). https://doi.org/10.1007/s00128-020-03035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-03035-0

Keywords

Navigation