Skip to main content
Log in

Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: implications for metal and sulfur sources in mafic VMS deposits

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The link between metal enrichment and the addition of a magmatic volatile phase in volcanogenic massive sulfide deposits and actively forming seafloor massive sulfide deposits remains poorly characterized. This is especially true when considering how metal, sulfur and fluid flux change with time. In this study, we combine in situ sulfur isotope (δ34S; n = 31) measurements with trace metal chemistry of pyrite (n = 143) from the Mala VMS deposit, Troodos, Cyprus. The aim of our study is to assess the links between volatile influx and metal enrichment and establish how, or indeed if, this is preserved at the scale of individual mineral grains. We classify pyrite based on texture into colloform, granular, disseminated and massive varieties. The trace metal content of different pyrite textures is highly variable and relates to fluid temperature and secondary reworking that are influenced by the location of the sample within the mound. The sulfur isotope composition of pyrite at Mala ranges from − 17.1 to 7.5‰ (n = 31), with a range of − 10.9 to 2.5‰ within a single pyrite crystal. This variation is attributed to changes in the relative proportion of sulfur sourced from (i) SO2 disproportionation, (ii) thermochemical sulfate reduction, (iii) the leaching of igneous sulfur/sulfide and (iv) bacterial sulfate reduction. Our data shows that there is no correlation between δ34S values and the concentration of volatile elements (Te, Se) and Au in pyrite at Mala indicating that remobilization of trace metals occurred within the mound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adamides NG (2010) Mafic-dominated volcanogenic sulphide deposits in the Troodos ophiolite, Cyprus Part 2 – a review of genetic models and guides for exploration. Appl Earth Sci 119:193–204

    Article  Google Scholar 

  • Alt JC (1994) A sulfur isotopic profile through the Troodos ophiolite, Cyprus: primary composition and the effects of seawater hydrothermal alteration. Geochim Cosmochim Acta 58:1825–1840

    Article  Google Scholar 

  • Alt JC, Shanks WC (2011) Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific). Earth Planet Sci Lett 310:73–83

    Article  Google Scholar 

  • Andersen C, Theissen-Krah S, Hannington M, Rüpke L, Petersen S (2017) Faulting and off-axis submarine massive sulfide accumulation at slow spreading mid-ocean ridges: a numerical modeling perspective. Geochem Geophys Geosyst 18:2305–2320

    Article  Google Scholar 

  • Banerjee NR, Gillis KM, Muehlenbachs K (2000) Discovery of epidosites in a modern oceanic setting, the Tonga forearc. Geology 28:151–154

    Article  Google Scholar 

  • Barrie CD, Boyce AJ, Boyle AP, Williams PJ, Blake K, Ogawara T, Akai J, Prior DJ (2009) Growth controls in colloform pyrite. Am Mineral 94:415–442

    Article  Google Scholar 

  • Berkenbosch HA, de Ronde CEJ, Gemmell JB, McNeill AW, Goemann K (2012) Mineralogy and Formation of Black Smoker Chimneys from Brothers Submarine Volcano, Kermadec Arc. Econ Geol 107:1613–1633

    Article  Google Scholar 

  • Brazilian Metals Group (2013) High-grade copper-zinc sulphide mineralisation identified at Mala Prospect – Vrechia. www.bmgl.com.au/investors/annual-reports. Accessed 30 July 2018

  • Brueckner SM, Piercey SJ, Layne GD, Piercey G, Sylvester PJ (2015) Variations of sulphur isotope signatures in sulphides from the metamorphosed Ming Cu(−Au) volcanogenic massive sulphide deposit, Newfoundland Appalachians, Canada. Miner Deposita 50:619–640

    Article  Google Scholar 

  • Butler IB, Nesbitt RW (1999) Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Planet Sci Lett 167:335–345

    Article  Google Scholar 

  • Butterfield DA, Jonasson IR, Massoth GJ, Feely RA, Roe KK, Embley RE, Holden JF, McDuff RE, Lilley MD, Delaney JR (1997) Seafloor eruptions and evolution of hydrothermal fluid chemistry. Philos Trans Royal Soc A 355(1723):369–386. https://doi.org/10.1098/rsta.1997.0013

  • Butterfield DA, Massoth GJ (1994) Geochemistry of north Cleft segment vent fluids: temporal changes in chlorinity and their possible relation to recent volcanism. J Geophys Res Solid Earth 99:4951–4968

    Article  Google Scholar 

  • Butterfield DA, McDuff RE, Mottl MJ, Lilley MD, Lupton JE, Massoth GJ (1994) Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: phase separation and brine loss. J Geophys Res Solid Earth 99:9561–9583

    Article  Google Scholar 

  • Butterfield DA, Nakamura K, Takano B, Lilley MD, Lupton JE, Resing JA, Roe KK (2011) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology 39:803–806

    Article  Google Scholar 

  • Cherniak DJ (2010) Diffusion in carbonates, fluorite, sulfide minerals, and diamond. Rev Mineral Geochem 72:871–897

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Mao J (2009) Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem Geol 264:101–121

    Article  Google Scholar 

  • Crowe DE, Valley JW (1992) Laser microprobe study of sulfur isotope variation in a sea-floor hydrothermal spire, Axial Seamount, Juan de Fuca Ridge, eastern Pacific. Chem Geol 101:63–70

  • de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic-hydrothermal system: Brothers Volcano, Southern Kermadec Arc, New Zealand. Econ Geol 100:1097–1133

    Article  Google Scholar 

  • de Ronde CEJ, Massoth GJ, Butterfield DA, Christenson BW, Ishibashi J, Ditchburn RG, Hannington MD, Brathwaite RL, Lupton JE, Kamenetsky VS, Graham IJ, Zellmer GF, Dziak RP, Embley RW, Dekov VM, Munnik F, Lahr J, Evans LJ, Takai K (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner Deposita 46:541–584

    Article  Google Scholar 

  • Edmond JM, Campbell AC, Palmer MR, Klinkhammer GP, German CR, Edmonds HN, Elderfield H, Thompson G, Rona P (1995) Time series studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic Ridge: a new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide orebodies. Geol Soc Lond Spec Publ 87:77–86

    Article  Google Scholar 

  • Eldridge CW, Barton PB, Ohmoto H (1983) Mineral textures and their bearing on formation of the Kuroko orebodies. Econ Geol Mono 5:241–281

    Google Scholar 

  • Fallon EK, Petersen S, Brooker RA, Scott TB (2017) Oxidative dissolution of hydrothermal mixed-sulphide ore: an assessment of current knowledge in relation to seafloor massive sulphide mining. Ore Geol Rev 86:309–337

    Article  Google Scholar 

  • Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36

    Article  Google Scholar 

  • Fox S, Katzir Y, Bach W, Schlicht L, Glessner J (2020) Magmatic volatiles episodically flush oceanic hydrothermal systems as recorded by zoned epidote. Commun Earth Environ 1:52

    Article  Google Scholar 

  • Fuchs S, Hannington MD, Petersen S (2019) Divining gold in seafloor polymetallic massive sulfide systems. Miner Deposita 54:789–820

    Article  Google Scholar 

  • Galley AG, Hannington MD, Jonasson IR (2007) Volcanogenic massive sulphide deposits, in: Mineral deposits of Canada: a synthesis of major deposit types. Geological Association of Canada, St. John’s, Newfoundland, pp.141–162

  • Gass IG (1968) Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220:39–42

    Article  Google Scholar 

  • Gass IG, Smewing JD (1973) Intrusion, extrusion and metamorphism at constructive margins: evidence from the Troodos Massif, Cyprus. Nature 242:26–29

    Article  Google Scholar 

  • Gemmel JB, Sharpe R, Jonasson IR, Herzig PM (2004) Sulfur isotope evidence for magmatic contributions to submarine and subaerial gold mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Econ Geol 99:1711–1725

    Article  Google Scholar 

  • Genna D, Gaboury D (2015) Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: an example from the Bracemac-McLeod deposits, Abitibi, Canada, and implications for exploration. Econ Geol 110:2087–2108

    Article  Google Scholar 

  • Gillis KM, Roberts MD (1999) Cracking at the magma–hydrothermal transition: evidence from the Troodos Ophiolite, Cyprus. Earth Planet Sci Lett 169:227–244

    Article  Google Scholar 

  • Grant HLJ, Hannington MD, Petersen S, Frische M, Fuchs SH (2018) Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chem Geol 498:45–71

    Article  Google Scholar 

  • Habicht KS, Canfield DE (1997) Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim Cosmochim Acta 61:5351–5361

    Article  Google Scholar 

  • Halbach P, Blum N, Münch U, Plüger W, Garbe-Schönberg D, Zimmer M (1998) Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner Deposita 33:302–309

    Article  Google Scholar 

  • Hannington MD, Bleeker W, Kjarsgaard I (1999) Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit: Part II. The Bornite Zone*, in: Hannington, MD, Barrie CT (ed), The giant Kidd Creek volcanogenic massive sulfide deposit, Western Abitibi Subprovince, Canada. Society of Economic Geologists, Littleton Colorado

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littelton, pp 111–141

    Google Scholar 

  • Hannington MD, Galley AG, Herzig PM, Petersen S (1998) Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (ed), 1998 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 158

  • Hannington MD, Peter JM, Scott SD (1986) Gold in sea-floor polymetallic sulfide deposits. Econ Geol 81(8):1867–1883. https://doi.org/10.2113/gsecongeo.81.8.1867

    Article  Google Scholar 

  • Hannington MD, Scott SD (1989) Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides; evidence from sulfide mineralogy and the composition of sphalerite. Econ Geol 84:1978–1995. https://doi.org/10.2113/gsecongeo.84.7.1978

    Article  Google Scholar 

  • Herzig PM, Hannington MD, Scott SD, Maliotis G, Rona PA, Thompson G (1991) Gold-rich sea-floor gossans in the Troodos Ophiolite and on the Mid-Atlantic Ridge. Econ Geol 86:1747–1755

    Article  Google Scholar 

  • Herzig PM, Hannington MD, Arribas A Jr (1998) Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Miner Deposita 33:226–237

    Article  Google Scholar 

  • Humphris SE, Herzig PM, Miller DJ, Alt JC, Becker K, Brown D, Brügmann G, Chiba H, Fouquet Y, Gemmell JB, Guerin G, Hannington MD, Holm NG, Honnorez JJ, Iturrino GJ, Knott R, Ludwig R, Nakamura K, Petersen S, Reysenbach A-L, Rona PA, Smith S, Sturz AA, Tivey MK, Zhao X (1995) The internal structure of an active sea-floor massive sulphide deposit. Nature 377:713–716

    Article  Google Scholar 

  • Huston DL, Sie SH, Suter GF (1995) Selenium and its importance to the study of ore genesis: the theoretical basis and its application to volcanic-hosted massive sulfide deposits using pixeprobe analysis. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At Nucl Microprobe Technol Appl 104:476–480

    Article  Google Scholar 

  • Huston DL, Relvas JMRS, Gemmell JB, Drieberg S (2011) The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic–hydrothermal contributions. Miner Deposita 46:473–507

    Article  Google Scholar 

  • Jamieson JW, Hannington MD, Clague DA, Kelley DS, Delaney JR, Holden JF, Tivey MK, Kimpe LE (2013) Sulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge. Geochem Geophys Geosyst 14:2084–2099

    Article  Google Scholar 

  • Jowitt SM, Jenkin GRT, Coogan LA, Naden J (2012) Quantifying the release of base metals from source rocks for volcanogenic massive sulfide deposits: effects of protolith composition and alteration mineralogy. J Geochem Explor 118:47–59

    Article  Google Scholar 

  • Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286

    Article  Google Scholar 

  • Keith M, Haase KM, Klemd R, Krumm S, Strauss H (2016a) Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chem Geol 423:7–18

    Article  Google Scholar 

  • Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R (2016b) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol Rev 72:728–745

    Article  Google Scholar 

  • Keith M, Haase KM, Klemd R, Smith DJ, Schwarz-Schampera U, Bach W (2018) Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano. Kermadec Island Arc Contrib Mineral Petrol 173:40

    Article  Google Scholar 

  • Kim J, Lee I, Lee K-Y (2004) S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system. J Geophys Res Solid Earth 109:B12210

  • Kleinrock MC, Humphris SE (1996) Structural control on sea-floor hydrothermal activity at the TAG active mound. Nature 382:149–153

    Article  Google Scholar 

  • Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geotherm Res 97:287–307

    Article  Google Scholar 

  • LaFlamme C, Barré G, Fiorentini ML, Beaudoin G, Occhipinti S, Bell J (2021) A significant seawater sulfate reservoir at 2.0 Ga determined from multiple sulfur isotope analyses of the Paleoproterozoic Degrussa Cu-Au volcanogenic massive sulfide deposit, Western Australia. Geochim Cosmochim Acta 295:178–193

    Article  Google Scholar 

  • Lalou C, Thompson G, Arnold M, Brichet E, Druffel E, Rona PA (1990) Geochronology of TAG and Snakepit hydrothermal fields, Mid-Atlantic Ridge: witness to a long, complex hydrothermal history. Earth Planet Sci Lett 97:113–128

    Article  Google Scholar 

  • Lalou C, Reyss J-L, Brichet E, Arnold M, Thompson G, Fouquet Y, Rona PA (1993) New age data for Mid-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited. J Geophys Res 98:9705–9713

    Article  Google Scholar 

  • Lalou C, Münch U, Halbach P, Reyss J-L (1998) Radiochronological investigation of hydrothermal deposits from the MESO zone, Central Indian Ridge. Mar Geol 149:243–254

    Article  Google Scholar 

  • Layton-Matthews D, Peter JM, Scott SD, Leybourne MI (2008) Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake District, Yukon Territory, Canada. Econ Geol 103:61–88

    Article  Google Scholar 

  • Layton-Matthews D, Leybourne MI, Peter JM, Scott SD, Cousens B, Eglington BM (2013) Multiple sources of selenium in ancient seafloor hydrothermal systems: compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada. Geochim Cosmochim Acta 117:313–331

    Article  Google Scholar 

  • Lode S, Piercey SJ, Layne GD, Piercey G, Cloutier J (2017) Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada. Miner Deposita 52:105–128

    Article  Google Scholar 

  • Lüders V, Pracejus B, Halbach P (2001) Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chem Geol 173:45–58

    Article  Google Scholar 

  • Martin AJ, McDonald I, MacLeod CJ, Prichard HM, McFall K (2018) Extreme enrichment of selenium in the Apliki Cyprus-type VMS deposit, Troodos, Cyprus. Min Mag 82:697–724

    Article  Google Scholar 

  • Martin AJ, Keith M, McDonald I, Haase KM, McFall KA, Klemd R, MacLeod CJ (2019) Trace element systematics and ore-forming processes in mafic VMS deposits: evidence from the Troodos ophiolite, Cyprus. Ore Geol Rev 106:205–225

    Article  Google Scholar 

  • Martin AJ, Keith M, Parvaz DB, McDonald I, Boyce AJ, McFall KA, Jenkin GRT, Strauss H, MacLeod CJ (2020) Effects of magmatic volatile influx in mafic VMS hydrothermal systems: evidence from the Troodos ophiolite, Cyprus. Chem Geol 531:119325

    Article  Google Scholar 

  • Martin AJ, McDonald I, Jenkin GRT, McFall KA, Boyce AJ, Jamieson JW, MacLeod CJ (2021) A missing link between ancient and active mafic-hosted seafloor hydrothermal systems – magmatic volatile influx in the exceptionally preserved Mala VMS deposit, Troodos, Cyprus. Chem Geol 567:120127

    Article  Google Scholar 

  • Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ Geol 104:1111–1141

    Article  Google Scholar 

  • Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV, Herrington RJ, Ayupova NR, Zaykov VV, Lein AYu, Tseluyko AS, Melekestseva IYu, Tessalina SG (2017) Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol Rev 85:64–106. https://doi.org/10.1016/j.oregeorev.2016.09.012

  • Mathieu L (2019) Detecting magmatic-derived fluids using pyrite chemistry: example of the Chibougamau area, Abitibi Subprovince, Québec. Ore Geol Rev 114:103–127

    Article  Google Scholar 

  • McDermott JM, Ono S, Tivey MK, Seewald JS, Shanks WC, Solow AR (2015) Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes. Geochim Cosmochim Acta 160:169–187

    Article  Google Scholar 

  • McDonald MJ, Piercey SJ, Layne GD, Pigage LC, Piercey G (2018) Mineral assemblages, textures and in situ sulphur isotope geochemistry of sulphide mineralization from the Cyprus-type ice volcanogenic massive sulphide (VMS) deposit, ,on Canada. Minerals 8:501

    Article  Google Scholar 

  • McPhail DC (1995) Thermodynamic properties of aqueous tellurium species between 25 and 350°. Geochim Cosmochim Acta 59:851–866

    Google Scholar 

  • Melekestseva IY, Tret’yakov GA, Nimis P, Yuminov AM, Maslennikov VV, Maslennikova SP, Kotlyarov VA, Beltenev VE, Danyushevsky LV, Large R (2014) Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87′ N): evidence for phase separation and magmatic input. Mar Geol 349:37–54

    Article  Google Scholar 

  • Meng X, Li X, Chu F, Fu B, Lei J, Li Z, Wang H, Chen L (2019) Multi-stage growth and fluid evolution of a hydrothermal sulphide chimney in the East Pacific Ridge 1–2° S hydrothermal field: constraints from in situ sulphur isotopes. Geol Mag 156:989–1002

    Article  Google Scholar 

  • Meng X, Li X, Chu F, Zhu J, Lei J, Li Z, Wang H, Chen L, Zhu Z (2020) Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1–2°S). Ore Geol Rev 116:103209

    Article  Google Scholar 

  • Metz S, Trefry JH (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta 64(13):2267–2279. https://doi.org/10.1016/S0016-7037(00)00354-9

    Article  Google Scholar 

  • Monecke T, Petersen S, Hannington MD, Grant H, Samson I (2016) The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions. Rev Econ Geol 18:245–306

    Google Scholar 

  • Muenow DW, Garciat MO, Aggrey KE, Bednarz U, Schmincke HU (1990) Volatiles in submarine glasses as a discriminant of tectonic origin: application to the Troodos ophiolite. Nature 343:159–161

    Article  Google Scholar 

  • Mukasa SB, Ludden JN (1987) Uranium-lead isotopic ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance. Geology 15:825–828

    Article  Google Scholar 

  • Murton BJ, Lehrmann B, Dutrieux AM, Martins S, de la Iglesia AG, Stobbs IJ, Barriga FJAS, Bialas J, Dannowski A, Vardy ME, North LJ, Yeo IALM, Lusty PAJ, Petersen S (2019) Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge). Ore Geol Rev 107:903–925

    Article  Google Scholar 

  • Nozaki T, Nagase T, Ushikubo T, Shimizu K, Ishibashi J-I (2021) Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization. Geology 49(2):222–227. https://doi.org/10.1130/G47943.1

    Article  Google Scholar 

  • Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10:135–177

    Article  Google Scholar 

  • Ohmoto H, Lasaga AC (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745

    Article  Google Scholar 

  • Ono S, Shanks WC, Rouxel OJ, Rumble D (2007) S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182

    Article  Google Scholar 

  • Parvaz DB (2014) Oxidation zones of volcanogenic massive sulphide deposits in the Troodos Ophiolite, Cyprus: targeting secondary copper deposits. Doctoral Thesis, University of Exeter

  • Patten CGC, Pitcairn IK, Teagle DAH (2017) Hydrothermal mobilisation of Au and other metals in supra-subduction oceanic crust: insights from the Troodos ophiolite. Ore Geol Rev 86:487–508

    Article  Google Scholar 

  • Patten CGC, Pitcairn IK, Alt JC, Zack T, Lahaye Y, Teagle DAH, Markdahl K (2020) Metal fluxes during magmatic degassing in the oceanic crust: sulfide mineralisation at ODP site 786B, Izu-Bonin forearc. Miner Deposita 55:469–489

    Article  Google Scholar 

  • Pearce JA, Robinson PT (2010) The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res A Tribute Miyashiro 18:60–81

    Article  Google Scholar 

  • Pedersen L-ER, Staudigel H, McLoughlin N, Whitehouse MJ, Strauss H (2017) A multiple sulfur isotope study through the volcanic section of the Troodos ophiolite. Chem Geol 46:849–862

    Google Scholar 

  • Petersen S, Herzig PM, Hannington MD (2000) Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Miner Deposita 35:233–259

    Article  Google Scholar 

  • Petersen S, Herzig PM, Hannington MD, Jonasson IR, Arribas A (2002) Submarine gold mineralization near Lihir Island, New Ireland Fore-Arc, Papua New Guinea. Econ Geol 97:1795–1813

    Article  Google Scholar 

  • Prichard HM, Knight RD, Fisher PC, McDonald I, Zhou M-F, Wang CY (2013) Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: an example of selenium remobilization by postmagmatic fluids. Miner Deposita 48:767–786

    Article  Google Scholar 

  • Rautenschlein M, Jenner GA, Hertogen J, Hofmann AW, Kerrich R, Schmincke H-U, White WM (1985) Isotopic and trace element composition of volcanic glasses from the Akaki Canyon, Cyprus: implications for the origin of the Troodos ophiolite. Earth Planet Sci Lett 75:369–383

    Article  Google Scholar 

  • Reed MH, Palandri J (2006) Sulfide mineral precipitation from hydrothermal fluids. Rev Mineral Geochem 61:609–631

    Article  Google Scholar 

  • Revan MK, Genç Y, Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV (2014) Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geol Rev 63:129–149

    Article  Google Scholar 

  • Richardson CJ, Cann JR, Richards HG, Cowan JG (1987) Metal-depleted root zones of the Troodos ore-forming hydrothermal systems, Cyprus. Earth Planet Sci Lett 84:243–253

    Article  Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004) Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes. Geochim Cosmochim Acta 68:2295–2311

    Article  Google Scholar 

  • Rouxel O, Ono S, Alt J, Rumble D, Ludden J (2008) Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth Planet Sci Lett 268:110–123

    Article  Google Scholar 

  • Sakai H (1968) Isotopic properties of sulfur compounds in hydrothermal processes. Geochem J 2:29–49

    Article  Google Scholar 

  • Shanks WC (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43:469–525

    Article  Google Scholar 

  • Sharman ER, Taylor BE, Minarik WG, Dubé B, Wing BA (2015) Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Canada): implications for volcanogenic massive sulfide deposit genesis. Miner Deposita 50:591–606

    Article  Google Scholar 

  • Sillitoe RH, Hannington MD, Thompson JFH (1996) High sulfidation deposits in the volcanogenic massive sulfide environment. Econ Geol 91:204–212

    Article  Google Scholar 

  • Smith JW, Holwell DA, McDonald I, Boyce AJ (2016) The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex. Ore Geol Rev 73:148–174. https://doi.org/10.1016/j.oregeorev.2015.10.022

    Article  Google Scholar 

  • Tivey MK (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20:50–65

    Article  Google Scholar 

  • Tivey MK, Humphris SE, Thompson G, Hannington MD, Rona PA (1995) Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J Geophys Res Solid Earth 100:12527–12555

    Article  Google Scholar 

  • Varga RJ, Moores EM (1985) Spreading structure of the Troodos ophiolite, Cyprus. Geology 13:846–850

    Article  Google Scholar 

  • Von Damm KL (1990) Seafloor Hydrothermal Activity: Black Smoker Chemistry and Chimneys. Annu Rev Earth Planet Sci 18(1):173–204. https://doi.org/10.1146/annurev.ea.18.050190.001133

    Article  Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: SE Humphris, Zierenberg RA, Mullineaux LS, Thomson RE (ed) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, Washington D.C., vol.91 pp. 222–247

  • Von Damm KL, Oosting SE, Kozlowski R, Buttermore LG, Colodner DC, Edmonds HN, Edmond JM, Grebmeier JM (1995) Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375:47–50

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240. https://doi.org/10.1016/j.jvolgeores.2004.07.023

    Article  Google Scholar 

  • Wang Y, Han X, Petersen S, Frische M, Qiu Z, Cai Y, Zhou P (2018) Trace metal distribution in sulfide minerals from ultramafic-hosted hydrothermal systems: examples from the Kairei Vent Field, Central Indian Ridge. Minerals 8:526

    Article  Google Scholar 

  • Woelki D, Regelous M, Haase KM, Romer RHW, Beier C (2018) Petrogenesis of boninitic lavas from the Troodos Ophiolite, and comparison with Izu–Bonin–Mariana fore-arc crust. Earth Planet Sci Lett 498:203–214

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser CC, Viljoen F, Petersen S, Vorster C (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochim Cosmochim Acta 159:16–41

    Article  Google Scholar 

  • Woodruff LG, Shanks WC (1988) Sulfur isotope study of chimney minerals and vent fluids from 21°N, East Pacific Rise: hydrothermal sulfur sources and disequilibrium sulfate reduction. J Geophys Res Solid Earth 93:4562–4572

    Article  Google Scholar 

  • Wortmann UG, Bernasconi SM, Böttcher ME (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650

    Article  Google Scholar 

  • Yamamoto M (1976) Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals. Mineral Deposita 11:197–209

    Article  Google Scholar 

  • Yang K, Scott SD (1996) Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383:420–423

    Article  Google Scholar 

  • Yang K, Scott SD (2002) Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus Back-Arc Basin, Western Pacific. Econ Geol 97:1079–1100

    Article  Google Scholar 

  • Yeats CJ, Parr JM, Binns RA, Gemmell JB, Scott SD (2014) The SuSu Knolls hydrothermal field, Eastern Manus Basin, Papua New Guinea: an active submarine high-sulfidation copper-gold system. Econ Geol 109:2207–2226

    Article  Google Scholar 

  • You C-F, Bickle MJ (1998) Evolution of an active sea-floor massive sulphide deposit. Nature 394:668–671

    Article  Google Scholar 

  • Zeng Z, Ma Y, Chen S, Selby D, Wang X, Yin X (2017) Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation. Ore Geol Rev 87:155–171

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Geological Survey Department of Cyprus, especially Costas Costantinou and Andreas Zissimos. We thank Michael Green and Ifigenia Gavriel for the discussion and assistance in the field. We thank Stefanie Brueckner and associate editor Mostafa Fayek for their constructive reviews and editor-in-chief Georges Beaudoin for the editorial handling of this manuscript.

Funding

This research was partly funded by the NERC SoS consortium grant NE/M010848/1 “TeaSe: tellurium and selenium cycling and supply” awarded to Cardiff University and by the Canadian Research Chair program awarded to John W. Jamieson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Martin.

Additional information

Editorial handling: M. Fayek

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 68969 KB)

Supplementary file2 (XLSX 98 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A.J., McDonald, I., Jamieson, J.W. et al. Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: implications for metal and sulfur sources in mafic VMS deposits. Miner Deposita 57, 911–933 (2022). https://doi.org/10.1007/s00126-021-01080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-021-01080-1

Navigation