Skip to main content

Advertisement

Log in

Supergene oxidation of epithermal gold-silver mineralization in the Deseado massif, Patagonia, Argentina: response to subduction of the Chile Ridge

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Radiometric ages for supergene alunite and jarosite effectively date the oxidation of former concentrations of pyrite and any associated sulfide minerals. These K-bearing sulfate minerals, formed under low-pH conditions, are uncommon supergene products in low-sulfidation epithermal deposits because of the general paucity of pyrite for acid generation. For this reason, the age of supergene oxidation—locally to depths of 200 m or more—in the epithermal Au-Ag deposits of the Deseado massif, located in the extra-Andean foreland of Patagonia, southern Argentina, has remained unknown. Although, theoretically, the oxidation could have taken place anytime between the Late Jurassic, when the Au-Ag mineralization formed, and Pleistocene, K-Ar ages for alunite and jarosite from two widely separated and unusually pyritic, Ag-bearing hydrothermal breccias (Lejano and Libanesa) show it to have been mid-Miocene, 13.8 ± 1.8 Ma. This is the time when the Deseado massif underwent appreciable regional-scale tectonic uplift and valley incision, following ~ 140 myr during which the region was topographically subdued and the site of either fluvio-lacustrine or shallow-marine sedimentation. The uplift, combined with increasing aridity due to the orographic rain shadow caused by growth of the Patagonian Andes to the west and enhanced by global cooling, would have depressed regional groundwater tables, thereby promoting the supergene sulfide oxidation. The mid-Miocene uplift appears to have been triggered by development of a slab tear and slab window beneath the Deseado massif during early stages of subduction of the Chile oceanic-ridge spreading center at the Pacific margin. Supergene sulfide oxidation in both the Deseado massif and Atacama Desert of northern Chile was the result of Cenozoic uplift during progressive aridification, although the causes of these phenomena were radically different. However, when the supergene oxidation was taking place in the Deseado massif, up to 30 myr of supergene activity in the Atacama Desert were coming to an end because of the onset of hyperaridity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100:1640–1656

    Article  Google Scholar 

  • Arancibia G, Matthews SJ, Pérez de Arce C (2006) K-Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. J Geol Soc Lond 163:107–118

    Article  Google Scholar 

  • Arribas Jr A, Schalamuk IB, de Barrio R, Fernández R, Itaya T (1996) Edades radimétricas de mineralizaciones epitermales auríferas des Macizo del Deseado, provincia de Santa Cruz, Argentina. In: Age and isotopes of South American ores. Anal 39th Cong Brasil Geol, Salvador, Bahia, Brazil, 7, pp 254–257

  • Bétard F, Peulvast JP, Rabassa J, Aguilera EY (2014) Meso-Cenozoic paleotopographies and paleolandscapes in the Deseado massif (Santa Cruz Province, Argentina). In: Rabassa J, Ollier C (eds) Gondwana landscapes in southern South America. Springer Earth System Sciences, Springer, Dordrecht, pp 477–501

  • Bissig T, Riquelme R (2010) Andean uplift and climate evolution in the southern Atacama Desert deduced from geomorphology and supergene alunite-group minerals. Earth Planet Sci Lett 299:447–457

    Article  Google Scholar 

  • Bladh KW (1982) The formation of goethite, jarosite, and alunite during the weathering of sulfide-bearing felsic rocks. Econ Geol 77:176–184

    Article  Google Scholar 

  • Blisniuk PM, Stern LA, Chamberlain CP, Idleman B, Zeitler PK (2005) Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth Planet Sci Lett 230:125–142

    Article  Google Scholar 

  • Blisniuk PM, Stern LA, Chamberlain CP, Zeitler PK, Ramos VA, Sobel ER, Haschke M, Strecker MR, Warkus F (2006) Links between mountain uplift, climate, and surface processes in the southern Patagonian Andes In: Oncken O, et al. (eds) The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp 429–440

  • Bourgois J, Lagabrielle Y, Martin H, Dyment J, Frutos J, Cisternas ME (2016) A review on forearc ophiolite obduction, adakite-like generation, and slab window development at the Chile triple junction area: uniformitarian framework for spreading-ridge subduction. Pure Appl Geophys 173:3217–3246

    Article  Google Scholar 

  • Bouzari F, Clark AH (2002) Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit, I Región, northern Chile. Econ Geol 97:1701–1740

    Article  Google Scholar 

  • Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res Solid Earth 91:471–496

    Article  Google Scholar 

  • Clarke JDA (2006) Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73:101–114

    Article  Google Scholar 

  • Compagnucci RH (2011) Atmospheric circulation over Patagonia from the Jurassic to present: a review through proxy data and climatic modelling scenarios. Biol J Linn Soc 103:229–249

    Article  Google Scholar 

  • Coeur Mining (2013) News release, 15 February 2013. http://investors.coeur.com/Cache/1001194441.PDF?Y=&O=PDF&D=&FID=1001194441&T=&IID=4349317. Accessed 31 Dec 2017

  • Coutand I, Diraison M, Cobbold PR, Gapais D, Rossello EA, Miller M (1999) Structure and kinematics of a foothills transect, Lago Viedma, southern Andes (49°30′S). J S Am Earth Sci 12:1–15

    Article  Google Scholar 

  • Cravero MF, Domínguez EA (1992) Kaolin deposits in the Lower Cretaceous Baqueró Formation (Santa Cruz province, Patagonia, Argentina). J S Am Earth Sci 6:223–235

    Article  Google Scholar 

  • Dietrich A, Gutierrez R, Nelson EP, Layer PW (2012) Geology of the epithermal Ag-Au Huevos Verdes vein system and San José district, Deseado massif, Patagonia, Argentina. Mineral Deposita 47:233–249

    Article  Google Scholar 

  • Espinoza F, Morata D, Pelleter E, Maury RC, Suárez M, Lagabrielle Y, Polvé M, Bellon H, Cotton C, De la Cruz R, Guivel C (2005) Petrogenesis of the Eocene and Mio–Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: evidence for the participation of two slab windows. Lithos 82:315–343

    Article  Google Scholar 

  • Fernández RR, Blesa A, Moreira P, Echeveste H, Mykietiuk K, Andrada de Palomera P, Tessone M (2008) Los depósitos de oro y plata vinculados al magmatismo jurásico de la Patagonia: Revisión y perspectivas para la exploración. Rev Asoc Geol Arg 63:665–681

    Google Scholar 

  • Forsythe R, Nelson E (1985) Geological manifestations of ridge collision: evidence from the Golfo de Penas-Taitao Basin, southern Chile. Tectonics 4:477–495

    Article  Google Scholar 

  • Freyssinet P, Butt CRM, Morris RC, Piantone P (2005) Ore-forming processes related to lateritic weathering. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology One Hundredth Anniversary Volume. Economic Geology Publishing Co., pp 681–722

  • Garreaud RD, Molina A, Farias M (2010) Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth Planet Sci Lett 292:39–50

    Article  Google Scholar 

  • Ghiglione C, Naipauer M, Sue C, Barberón V, Valencia V, Aguirre-Urreta B, Ramos VA (2015) U–Pb zircon ages from the northern Austral basin and their correlation with the Early Cretaceous exhumation and volcanism of Patagonia. Cretac Res 55:116–128

    Article  Google Scholar 

  • Giacosa R, Zubia M, Sánchez M, Allard J (2010) Meso-Cenozoic tectonics of the southern Patagonian foreland: structural evolution and implications for Au–Ag veins in the eastern Deseado Region (Santa Cruz, Argentina). J S Am Earth Sci 30:134–150

    Article  Google Scholar 

  • Gorring ML, Kay SM, Zeitler PK, Ramos VA, Rubiolo D, Fernandez MI, Panza JL (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction. Tectonics 16:1–17

    Article  Google Scholar 

  • Guido DM (2004) Subdivisión litofacial e interpretación del volcanismo jurásico (Grupo Bahía Laura) en el este del Macizo del Deseado, provincia de Santa Cruz. Rev Asoc Geol Arg 50:727–742

    Google Scholar 

  • Guido DM, Campbell KA (2011) Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): characteristics and controls on regional distribution. J Volcanol Geotherm Res 203:35–47

    Article  Google Scholar 

  • Guido DM, Escayola MP, Schalamuk IB (2004) The basement of the Deseado Massif at Bahía Laura, Argentina: a proposal for its evolution. J S Am Earth Sci 16:567–577

    Article  Google Scholar 

  • Guillaume B, Martinod J, Husson L, Roddaz M, Riquelme R (2009) Neogene uplift of central eastern Patagonia: dynamic response to active spreading ridge subduction? Tectonics 28:TC2009. https://doi.org/10.1029/2008TC002324

    Article  Google Scholar 

  • Guillaume B, Gauteron C, Simon-Labric T, Martinod J, Roddaz M, Douville E (2013) Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth Planet Sci Lett 364:157–167

    Article  Google Scholar 

  • Guivel C, Morata D, Pelleter E, Espinoza F, Maury RC, Lagabrielle Y, Polvé M, Bellon H, Cotten J, Benoit M, Suárez M, de la Cruz R (2006) Miocene to late Quaternary Patagonian basalts (46–47°S): geochronometric and geochemical evidence for slab tearing due to active spreading ridge subduction. J Volcanol Geotherm Res 149:346–370

    Article  Google Scholar 

  • Gust DA, Biddle KT, Phelps DW, Uliana MA (1985) Associated middle to late Jurassic volcanism and extension in southern South America. Tectonophysics 116:223–253

    Article  Google Scholar 

  • Hartley AJ, Rice CM (2005) Controls on supergene enrichment of porphyry copper deposits in the Central Andes: a review and discussion. Mineral Deposita 40:515–525

    Article  Google Scholar 

  • Haschke M, Sobel ER, Blisniuk P, Strecker MR, Warkus F (2006) Continental response to active ridge subduction. Geophys Res Lett 33:L15315. https://doi.org/10.1029/2006GL025972

    Article  Google Scholar 

  • Hedenquist JW, Arribas Jr A, Gonzalez-Urien E (2000) Exploration for epithermal gold deposits. In: Hagemann SG, Brown PE (eds) Gold in 2000. Rev Econ Geol 13:245–277

  • Hervé M, Sillitoe RH, Wong C, Fernández P, Crignola F, Ipinza M, Urzúa F (2012) Geologic overview of the Escondida porphyry copper district, northern Chile. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe. Soc Econ Geol Spec Publ 16:55–78

  • Homovc JF, Constantini L (2001) Hydrocarbon exploration potential within intraplate shear-related depocenters: Deseado and San Julian basins, southern Argentina. AAPG Bull 85:1795–1816

    Google Scholar 

  • Horton BK (2018) Tectonic regimes of the central and southern Andes: responses to variations in plate coupling during subduction. Tectonics 37:402–429

    Article  Google Scholar 

  • Iglesias A, Artabe AE, Mor EM (2011) The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biol J Linn Soc 103:409–422

    Article  Google Scholar 

  • Jordan TE, Burns M, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid Cenozoic trigger for the Andes. Tectonics 20:308–324

    Article  Google Scholar 

  • Jovic SM, Guido DM, Schalamuk IB, Ríos FJ, Tassinari CCG, Recio C (2011) Pingüino In-bearing polymetallic vein deposit, Deseado Massif, Patagonia, Argentina: characteristics of mineralization and ore-forming fluids. Mineral Deposita 46:257–271

  • Kay SM, Copeland P (2006) Early to middle Miocene backarc magmas of the Neuquén Basin: geochemical consequences of slab shallowing and the westward drift of South America. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat). Geol Soc Am Spec Pap 407:185–213

  • Lagabrielle Y, Suárez M, Rossello EA, Hérail G, Martinod J, Régnier M, de la Cruz R (2004) Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. Tectonophysics 385:211–241

    Article  Google Scholar 

  • Lamb S (2016) Cenozoic uplift of the Central Andes in northern Chile and Bolivia—reconciling paleoaltimetry with the geological evolution. Can J Earth Sci 53:1227–1245

    Article  Google Scholar 

  • Leanza AF (1958) Geología regional. In: La Argentina, suma de geografía, Vol 1: Editorial Peuser, Buenos Aires, pp 217–349

  • Lesta PJ, Ferello F (1972) Región extraandina de Chubut y norte de Santa Cruz. In: Leanza AF (ed) Geología regional argentina. Academia Nacional de Ciencias, Córdoba, pp 601–653

  • Martínez OA, Kutschker A (2011) The ‘Rodados Patagónicos’ (Patagonian Shingle Formation) of eastern Patagonia: environmental conditions of gravel sedimentation. Biol J Linn Soc 103:336–345

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2nd edn. Oxford University Press, New York 269 p

    Google Scholar 

  • Mirasol Resources Ltd (2009) Mirasol upgrades Libanesa silver-gold project with significant new drill targets. http://mirasolresources.com/category/exploration/santa-cruz/libanesa. Accessed 31 Dec 2017

  • Monroy C (2009) Análisis del tamaño de bloques económico óptimo de producción, para el yacimiento tipo pórfido cuprífero Zaldívar, Región de Antofagasta, Chile. Unpubl Memoria de Título, Universidad Católica del Norte, Antofagasta, 114 p

  • Moreira P, Echeveste H, Fernández R, Hartmann LA, Santos JO, Schalamuk I (2009) Depositional age of Jurassic epithermal gold-silver ore in the Deseado Massif, Patagonia, Argentina, based on Manantial Espejo and La Josefina prospects. Neues Jahrb Geol Palaontol Abh 253:25–40

    Article  Google Scholar 

  • Mpodozis C, Cornejo P (2012) Cenozoic tectonics and porphyry copper systems of the Chilean Andes. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe. Soc Econ Geol Spec Publ 16:329–360

  • Páez GN, Ruiz R, Guido DM, Ríos FJ, Subias I, Recio C, Schalamuk IB (2016) High-grade ore shoots at the Martha epithermal vein system, Deseado Massif, Argentina: the interplay of tectonic, hydrothermal and supergene processes in ore genesis. Ore Geol Rev 72:546–561

    Article  Google Scholar 

  • Palazzesi L, Barreda VD, Cuitiño JI, Guler MV, Tellería MC, Ventura Santos R (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nat Commun 5:3558. https://doi.org/10.1038/ncomms4558

    Article  Google Scholar 

  • Pankhurst RJ, Leat PT, Sruoga P, Rapela CW, Márquez M, Storey BC, Riley TR (1998) The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. J Volcanol Geotherm Res 81:113–136

    Article  Google Scholar 

  • Pankhurst RJ, Weaver SD, Hervé F, Larrondo P (1999) Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysén, southern Chile. J Geol Soc Lond 156:673–694

    Article  Google Scholar 

  • Panza JL, Nullo FE (1994) Mapa geológico de la provincia de Santa Cruz, República de Argentina, 1:750 000. Dirección Nacional del Servicio Geológico, Buenos Aires

  • Parras A, Griffin M, Feldmann R, Casadio S, Schweitzer C, Marenssi S (2008) Correlation of marine beds based on Sr- and Ar-date determinations and faunal affinities across the Paleogene/Neogene boundary in southern Patagonia, Argentina. J S Am Earth Sci 26:204–216

    Article  Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio A (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  • Perelló J, Muhr R, Mora R, Martínez E, Brockway H, Swaneck T, Artal C, Mpodozis C, Münchmeyer C, Clifford J, Acuña E, Valenzuela D, Argandoña R (2010) Wealth creation through exploration in mature terrain: the case history of the Centinela district, northern Chile porphyry copper belt. In: Goldfarb RJ, Marsh EE, Monecke T (eds) The challenge of finding new mineral resources: global metallogeny, innovative exploration, and new discoveries, Vol 1. Soc Econ Geol Spec Publ 15:229–252

  • Permuy Vidal C, Guido DM, Moreira P, Ríos FJ, Melgarejo JC (2016a) Características metalogenéticas de Eureka West, principal clavo mineralizado de la veta Eureka, distrito Cerro Negro, Macizo del Deseado. Rev Asoc Geol Arg 73:64–77

    Google Scholar 

  • Permuy Vidal C, Guido DM, Jovic SM, Bodnar RJ, Moncada D, Melgarejo JC, Hames W (2016b) The Marianas-San Marcos vein system: characteristics of a shallow low sulfidation epithermal Au-Ag deposit in the Cerro Negro district, Deseado Massif, Patagonia, Argentina. Mineral Deposita 51:725–748

    Article  Google Scholar 

  • Quang CX, Clark AH, Lee JKW, Guillén J (2003) 40Ar-39Ar ages of hypogene and supergene mineralization in the Cerro Verde-Santa Rosa porphyry Cu-Mo cluster, Arequipa, Peru. Econ Geol 98:1683–1696

    Article  Google Scholar 

  • Ramos VA (1989) Andean foothills structures in northern Magallanes Basin, Argentina. Am Assoc Petrol Geol Bull 73:887–903

    Google Scholar 

  • Ramos VA (2002) Evolución tectónica. In: Haller MJ (ed) Geología y recursos naturales de Santa Cruz. Relatorio 15th Cong Geol Arg, El Calafate, Argentina, pp 365–387

  • Ramos VA (2005) Seismic ridge subduction and topography: foreland deformation in the Patagonian Andes. Tectonophysics 399:73–86

    Article  Google Scholar 

  • Ramos VA, Ghiglione MC (2008) Tectonic evolution of the Patagonian Andes. In: Rabassa J (ed) The late Cenozoic of Patagonia and Tierra del Fuego. Developments in Quaternary Sciences 11:57–72. Elsevier, Amsterdam

  • Ramos VA, Kay SM (1992) Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions. Tectonophysics 205:261–282

    Article  Google Scholar 

  • Ramos VA, Kay SM, Singer BS (2004) Las adakitas de la Cordillera Patagónica: Nuevas evidencias geoquímicas y geocronológicas. Rev Asoc Geol Arg 59:693–706

    Google Scholar 

  • Rech JA, Currie BS, Shullenberger ED, Dunagan SP, Jordan TE, Blanco N, Tomlinson AJ, Rowe HD, Houston J (2010) Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Chile. Earth Planet Sci Lett 292:371–382

    Article  Google Scholar 

  • Riquelme R, Tapia M, Campos E, Mpodozis C, Carretier S, González R, Muñoz S, Fernández-Mort A, Sanchez C, Marquardt C (2017) Supergene and exotic Cu mineralization occur during periods of landscape stability in the Centinela Mining District, Atacama Desert? Basin Res:1–31. https://doi.org/10.1111/bre.12258

  • Rye, RO, Bethke, PM, Lanphere MA, Steven TA (2000) Neogene geomorphic and climatic evolution of the central San Juan Mountains, Colorado: K/Ar age and stable isotope data on supergene alunite and jarosite from the Creede mining district. In: Bethke PM, Hay RL (eds) Ancient Lake Creede: its volcano-tectonic setting, history of sedimentation, and relation to mineralization in the Creede Mining District. Geol Soc Am Spec Pap 346:95–103

  • Salani FM, Chernicoff CJ (2018) Calderas jurásicas asociadas a las volcanitas de la Formación Chon Aike en las inmediaciones del Puesto Salado, sector oriental de la provincia de Santa Cruz, Argentina. Geoacta [Asociación Argentina de Geofísicos y Geodestas] 42:61–70

    Google Scholar 

  • Scalabrino B, Lagabrielle Y, de la Rupelle A, Malavieille J, Polvé M, Espinoza F, Morata D, Suarez M (2009) Subduction of an active spreading ridge beneath South America: a review of the Cenozoic geological records from the Andean foreland, central Patagonia (46–47°S). In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Frontiers in Earth Sciences. Springer, Berlin, pp 227–246

    Chapter  Google Scholar 

  • Scalabrino B, Lagabrielle Y, Malavieille J, Dominguez S, Melnick D, Espinoza F, Suarez M, Rossello E (2010) A morphotectonic analysis of central Patagonian Cordillera: negative inversion of the Andean belt over a buried spreading center? Tectonics 29:TC2010. https://doi.org/10.1029/2009TC002453

    Article  Google Scholar 

  • Schalamuk IB, Zubia M, Genini A, Fernandez RR (1997) Jurassic epithermal Au-Ag deposits of Patagonia, Argentina. Ore Geol Rev 12:173–186

    Article  Google Scholar 

  • Schalamuk IB, de Barrio RE, Zubia MA, Genini A, Valvano J (2002) Mineralizaciones auro-argentíferas del macizo del Deseado y su encuadre metalogénico. In: Haller MJ (ed) Geología y recursos naturales de Santa Cruz. Relatorio 15th Cong Geol Arg, El Calafate, Argentina, pp 679–713

  • Sepulchre P, Sloan LC, Snyder M, Fiechter J (2009) Impacts of Andean uplift on the Humboldt Current system: a climate model sensitivity study. Paleoceanography 24:PA4215. https://doi.org/10.1029/2008PA001668

    Article  Google Scholar 

  • Sharpe R, Riveros C, Scavuzzo V (2002) Stratigraphy of the Chon Aike Formation ignimbrite sequence in the Cerro Vanguardia Au–Ag epithermal vein district. Actas 15th Cong Geol Arg, El Calafate, Argentina 2:370–375

  • Shatwell D, Clifford JA, Echevarría D, Irusta G, Lopez D (2011) Discoveries of low-sulfidation epithermal Au-Ag veins at Cerro Negro, Deseado Massif, Argentina. Soc Econ Geol Newsl 85:1, 17–23

  • Sillitoe RH (1985) Ore-related breccias in volcanoplutonic arcs. Econ Geol 80:1467–1514

    Article  Google Scholar 

  • Sillitoe RH (1993) Epithermal models: genetic types, geometrical controls and shallow features. In: Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Ore deposit modelling. Geol Assoc Can Spec Pap 40:403–417

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology One Hundredth Anniversary Volume. Economic Geology Publishing Co., pp 723–768

  • Sillitoe RH (2009) Supergene silver enrichment reassessed. In: Titley SR (ed) Supergene environments, processes, and products. Soc Econ Geol Spec Publ 14:15–32

  • Sillitoe RH (2015) Epithermal paleosurfaces. Mineral Deposita 50:767–793

    Article  Google Scholar 

  • Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In: Simmons SF, Graham IJ (eds) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Soc Econ Geol Spec Publ 10:315–343

  • Sillitoe RH, McKee EH (1996) Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Econ Geol 91:164–179

    Article  Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)–South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J S Am Earth Sci 11:211–215

    Article  Google Scholar 

  • Stoffregen RE (1993) Solubility relations of jarosite and natrojarosite at 150–250°C. Geochim Cosmochim Acta 57:2417–2429

    Article  Google Scholar 

  • Strecker MR, Alonso RN, Bookhagen B, Carrapa B, Hilley GE, Sobel ER, Trauth MH (2007) Tectonics and climate of the southern Central Andes. Annu Rev Earth Planet Sci 35:747–787

    Article  Google Scholar 

  • Thomson SN, Hervé F, Stöckhert B (2001) Mesozoic-Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics 20:693–711

    Article  Google Scholar 

  • Vasconcelos PM (1999) K-Ar and 40Ar/39Ar geochronology of weathering processes. Annu Rev Earth Planet Sci 27:183–229

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Carlos Nasi and Claudio Romo of Coeur Mining and Damien Koerber of Mirasol Resources Ltd. for introductions to the Lejano and Libanesa prospects, respectively; Oscar García, Oscar Nuñez, and Mariano Martínez of Hochschild Mining plc for illuminating discussions at the San José mine; Pepe Perelló for sample submission and supervision; and Constantino Mpodozis, Pepe Perelló, Victor Ramos, and, on behalf of Mineralium Deposita, Andreas Dietrich and Diego Guido for reviews that led to an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Sillitoe.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sillitoe, R.H. Supergene oxidation of epithermal gold-silver mineralization in the Deseado massif, Patagonia, Argentina: response to subduction of the Chile Ridge. Miner Deposita 54, 381–394 (2019). https://doi.org/10.1007/s00126-018-0814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0814-4

Keywords

Navigation