Skip to main content

Advertisement

Log in

Central prolactin receptors (PRLRs) regulate hepatic insulin sensitivity in mice via signal transducer and activator of transcription 5 (STAT5) and the vagus nerve

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Recent studies have revealed the crucial role of the central nervous system (CNS), especially the hypothalamus, in the regulation of insulin sensitivity in peripheral tissues. The aim of our current study was to investigate the possible involvement of hypothalamic prolactin receptors (PRLRs) in the regulation of hepatic insulin sensitivity.

Methods

We employed overexpression of PRLRs in mouse hypothalamus via intracerebroventricular injection of adenovirus expressing PRLR and inhibition of PRLRs via adenovirus expressing short-hairpin RNA (shRNA) specific for PRLRs in vivo. Selective hepatic vagotomy was employed to verify the important role of the vagus nerve in mediating signals from the brain to peripheral organs. In addition, a genetic insulin-resistant animal model, the db/db mouse, was used in our study to investigate the role of hypothalamic PRLRs in regulating whole-body insulin sensitivity.

Results

Overexpression of PRLRs in the hypothalamus improved hepatic insulin sensitivity in mice and inhibition of hypothalamic PRLRs had the opposite effect. In addition, we demonstrated that hypothalamic PRLR-improved insulin sensitivity was significantly attenuated by inhibiting the activity of signal transducer and activator of transcription 5 (STAT5) in the CNS and by selective hepatic vagotomy. Finally, overexpression of PRLRs significantly ameliorated insulin resistance in db/db mice.

Conclusions/interpretation

Our study identifies a novel central pathway involved in the regulation of hepatic insulin sensitivity, mediated by hypothalamic PRLR/STAT5 signalling and the vagus nerve, thus demonstrating an important role for hypothalamic PRLRs under conditions of insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

ERK:

Extracellular signal-related kinase

GFP:

Green fluorescent protein

GTT:

Glucose tolerance test

icv:

Intracerebroventricular

IF:

Immunofluorescence

IR:

Insulin receptor

ITT:

Insulin tolerance test

PRLR:

Prolactin receptor

shRNA:

Short-hairpin RNA

STAT5:

Signal transducer and activator of transcription 5

References

  1. Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat Rev Endocrinol 8:228–236

    Article  CAS  Google Scholar 

  2. American Diabetes Association (2005) Diagnosis and classification of diabetes mellitus. Diabetes Care 28(Suppl 1) :S37–S42

  3. Knight CM, Gutierrez-Juarez R, Lam TK et al (2011) Mediobasal hypothalamic SIRT1 is essential for resveratrol’s effects on insulin action in rats. Diabetes 60:2691–2700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lam TK, Pocai A, Gutierrez-Juarez R et al (2005) Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 11:320–327

    Article  CAS  PubMed  Google Scholar 

  5. Pocai A, Lam TK, Gutierrez-Juarez R et al (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026–1031

    Article  CAS  PubMed  Google Scholar 

  6. Marino JS, Xu Y, Hill JW (2011) Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 22:275–285

    CAS  PubMed  Google Scholar 

  7. Lee JY, Muenzberg H, Gavrilova O et al (2008) Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity. PLoS One 3:e1639

    Article  PubMed Central  PubMed  Google Scholar 

  8. Goffin V, Binart N, Touraine P, Kelly PA (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64:47–67

    Article  CAS  PubMed  Google Scholar 

  9. Binart N, Bachelot A, Bouilly J (2010) Impact of prolactin receptor isoforms on reproduction. Trends Endocrinol Metab 21:362–368

    Article  CAS  PubMed  Google Scholar 

  10. Freemark M, Avril I, Fleenor D et al (2002) Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 143:1378–1385

    Article  CAS  PubMed  Google Scholar 

  11. Amaral ME, Cunha DA, Anhe GF et al (2004) Participation of prolactin receptors and phosphatidylinositol 3-kinase and MAP kinase pathways in the increase in pancreatic islet mass and sensitivity to glucose during pregnancy. J Endocrinol 183:469–476

    Article  CAS  PubMed  Google Scholar 

  12. Huang C, Snider F, Cross JC (2009) Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology 150:1618–1626

    Article  CAS  PubMed  Google Scholar 

  13. Yu J, Xiao F, Zhang Q et al (2013) PRLR regulates hepatic insulin sensitivity in mice via STAT5. Diabetes 62:3103–3113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chiu S, Wise PM (1994) Prolactin receptor mRNA localization in the hypothalamus by in situ hybridization. J Neuroendocrinol 6:191–199

    Article  CAS  PubMed  Google Scholar 

  15. Pi XJ, Grattan DR (1999) Increased expression of both short and long forms of prolactin receptor mRNA in hypothalamic nuclei of lactating rats. J Mol Endocrinol 23:13–22

    Article  CAS  PubMed  Google Scholar 

  16. Augustine RA, Kokay IC, Andrews ZB, Ladyman SR, Grattan DR (2003) Quantitation of prolactin receptor mRNA in the maternal rat brain during pregnancy and lactation. J Mol Endocrinol 31:221–232

    Article  CAS  PubMed  Google Scholar 

  17. Pi XJ, Grattan DR (1998) Differential expression of the two forms of prolactin receptor mRNA within microdissected hypothalamic nuclei of the rat. Brain Res Mol Brain Res 59:1–12

    Article  CAS  PubMed  Google Scholar 

  18. Park S, Kang S, Lee HW, Ko BS (2012) Central prolactin modulates insulin sensitivity and insulin secretion in diabetic rats. Neuroendocrinology 95:332–343

    Article  CAS  PubMed  Google Scholar 

  19. Purkayastha S, Zhang H, Zhang G et al (2011) Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A 108:2939–2944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ueda H, Ikegami H, Kawaguchi Y et al (2000) Age-dependent changes in phenotypes and candidate gene analysis in a polygenic animal model of Type II diabetes mellitus; NSY mouse. Diabetologia 43:932–938

    Article  CAS  PubMed  Google Scholar 

  21. Wang Q, Jiang L, Wang J et al (2009) Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology 49:1166–1175

    Article  CAS  PubMed  Google Scholar 

  22. Xiao F, Huang Z, Li H et al (2011) Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways. Diabetes 60:746–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cheng Y, Zhang Q, Meng Q et al (2011) Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system. Mol Endocrinol (Baltimore) 25:1624–1635

    Article  CAS  Google Scholar 

  24. Guo F, Cavener DR (2007) The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 5:103–114

    Article  CAS  PubMed  Google Scholar 

  25. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  PubMed  Google Scholar 

  26. Yip SH, Eguchi R, Grattan DR, Bunn SJ (2012) Prolactin signalling in the mouse hypothalamus is primarily mediated by signal transducer and activator of transcription factor 5b but not 5a. J Neuroendocrinol 24:1484–1491

    Article  CAS  PubMed  Google Scholar 

  27. Ono H, Pocai A, Wang Y et al (2008) Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J Clin Invest 118:2959–2968

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kodama H, Fujita M, Yamaguchi I (1994) Development of hyperglycaemia and insulin resistance in conscious genetically diabetic (C57BL/KsJ-db/db) mice. Diabetologia 37:739–744

    Article  CAS  PubMed  Google Scholar 

  29. Posner BI, Kelly PA, Friesen HG (1975) Prolactin receptors in rat liver: possible induction by prolactin. Science (New York) 188:57–59

    Article  CAS  Google Scholar 

  30. Boutin JM, Jolicoeur C, Okamura H et al (1988) Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 53:69–77

    Article  CAS  PubMed  Google Scholar 

  31. Bouilly J, Sonigo C, Auffret J, Gibori G, Binart N (2012) Prolactin signaling mechanisms in ovary. Mol Cell Endocrinol 356:80–87

    Article  CAS  PubMed  Google Scholar 

  32. Furth PA, Nakles RE, Millman S, Diaz-Cruz ES, Cabrera MC (2011) Signal transducer and activator of transcription 5 as a key signaling pathway in normal mammary gland developmental biology and breast cancer. Breast Cancer Res 13:220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. White UA, Stephens JM (2010) Transcriptional factors that promote formation of white adipose tissue. Mol Cell Endocrinol 318:10–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cui Y, Hosui A, Sun R et al (2007) Loss of signal transducer and activator of transcription 5 leads to hepatosteatosis and impaired liver regeneration. Hepatology 46:504–513

    Article  CAS  PubMed  Google Scholar 

  35. Filippi BM, Yang CS, Tang C, Lam TK (2012) Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab 16:500–510

    Article  CAS  PubMed  Google Scholar 

  36. Pocai A, Obici S, Schwartz GJ, Rossetti L (2005) A brain-liver circuit regulates glucose homeostasis. Cell Metab 1:53–61

    Article  CAS  PubMed  Google Scholar 

  37. van den Hoek AM, Voshol PJ, Karnekamp BN et al (2004) Intracerebroventricular neuropeptide Y infusion precludes inhibition of glucose and VLDL production by insulin. Diabetes 53:2529–2534

    Article  PubMed  Google Scholar 

  38. Zhang Q, Yu J, Liu B et al (2013) Central activating transcription factor 4 (ATF4) regulates hepatic insulin resistance in mice via S6K1 signaling and the vagus nerve. Diabetes 62:2230–2239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Byrnes AP, Rusby JE, Wood MJA, Charlton HM (1995) Adenovirus gene-transfer causes inflammation in the brain. Neuroscience 66:1015–1024

    Article  CAS  PubMed  Google Scholar 

  40. Purkayastha S, Cai D (2013) Neuroinflammatory basis of metabolic syndrome. Mol Metab 2:356–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Moderscheim TAE, Gorba T, Pathipati P et al (2007) Prolactin is involved in glial responses following a focal injury to the juvenile rat brain. Neuroscience 145:963–973

    Article  CAS  PubMed  Google Scholar 

  42. Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382

    Article  CAS  PubMed  Google Scholar 

  43. Shingo T, Gregg C, Enwere E et al (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299:117–120

    Article  CAS  PubMed  Google Scholar 

  44. Ladyman SR, Augustine RA, Grattan DR (2010) Hormone interactions regulating energy balance during pregnancy. J Neuroendocrinol 22:805–817

    CAS  PubMed  Google Scholar 

  45. Melo AM, Benatti RO, Ignacio-Souza LM et al (2014) Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metab Clin Exp 63:682–692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Qiao (Institute of Neuroscience, Shanghai, China) for assistance with materials.

Funding

This work was supported by grants from the National Natural Science Foundation (81130076, 31271269, 81100615, 30890043, 81390350 and 81300659), Ministry of Science and Technology of China (973 Program 2010CB912502), International S&T Cooperation Program of China (Singapore 2014DFG32470), China National Funds for Distinguished Young Scientists (81325005), Basic Research Project of Shanghai Science and Technology Commission (13JC1409000), Key Program of Shanghai Scientific and Technological Innovation Action Plan (10JC1416900), the Knowledge Innovation Program of CAS (KSCX2-EW-R-09) and Chinese Academy of Sciences-funded project (2011KIP307). FG was also supported by the One Hundred Talents Program of the Chinese Academy of Sciences. FX was supported by the China Postdoctoral Science Foundation funded project (2012M520950 and 2013T60473) and a Chinese Academy of Sciences-funded project (2013KIP310).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

All authors contributed to the conception and design or the analysis and interpretation of data, and to drafting the article or revising it critically for intellectual content. All authors gave final approval of the version to be published. FG is responsible for the integrity of the work as a whole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifan Guo.

Additional information

Fei Xiao, Tingting Xia and Ziquan Lv contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Methods

(PDF 152 kb)

ESM Fig. 1

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, F., Xia, T., Lv, Z. et al. Central prolactin receptors (PRLRs) regulate hepatic insulin sensitivity in mice via signal transducer and activator of transcription 5 (STAT5) and the vagus nerve. Diabetologia 57, 2136–2144 (2014). https://doi.org/10.1007/s00125-014-3336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3336-3

Keywords

Navigation