Skip to main content

Advertisement

Log in

Association of the pattern recognition molecule H-ficolin with incident microalbuminuria in an inception cohort of newly diagnosed type 1 diabetic patients: an 18 year follow-up study

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Increasing evidence links complement activation through the lectin pathway to diabetic nephropathy. Adverse complement recognition of proteins modified by glycation has been suggested to trigger complement auto-attack in diabetes. H-ficolin (also known as ficolin-3) is a pattern recognition molecule that activates the complement cascade on binding to glycated surfaces, but the role of H-ficolin in diabetic nephropathy is unknown. We aimed to investigate the association between circulating H-ficolin levels and the incidence of microalbuminuria in type 1 diabetes.

Methods

We measured baseline H-ficolin levels and tracked the development of persistent micro- and macroalbuminuria in a prospective 18 year observational follow-up study of an inception cohort of 270 patients with newly diagnosed type 1 diabetes.

Results

Patients were followed for a median of 18 years (range 1–22 years). During follow-up, 75 patients developed microalbuminuria, defined as a persistent urinary albumin excretion rate (UAER) above 30 mg/24 h. When H-ficolin levels were divided into quartile groups an unadjusted Cox proportional hazards regression model showed a significant association with risk of incident microalbuminuria during follow-up (HR, fourth vs first quartile, 2.45; 95% CI 1.24, 4.85) (p = 0.01). This remained significant after adjusting for HbA1c, systolic blood pressure, smoking and baseline UAER (HR 2.09; 95% CI 1.03, 4.25) (p = 0.04).

Conclusions/interpretation

Our data suggest that high levels of the complement activating molecule H-ficolin are associated with an increased risk of future progression to microalbuminuria in patients with newly diagnosed type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

eGFR:

Estimated glomerular filtration rate

MACs:

Membrane-attack complexes

MBL:

Mannan-binding lectin

UAER:

Urinary albumin excretion rate

References

  1. U.S. Renal Data System (2013) USRDS 2013 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. Available from www.usrds.org/2013/pdf/v2_ch1_13.pdf. Accessed 27 June 2014

  2. European Renal Association, European Dialysis and Transplant Association (2011) ERA–EDTA Registry: annual report 2011. Available from www.era-edta-reg.org/files/annualreports/pdf/AnnRep2011.pdf. Accessed 27 June 2014

  3. Hansen TK, Tarnow L, Thiel S et al (2004) Association between mannose-binding lectin and vascular complications in type 1 diabetes. Diabetes 53:1570–1576

    Article  CAS  PubMed  Google Scholar 

  4. Hansen TK, Thiel S, Knudsen ST et al (2003) Elevated levels of mannan-binding lectin in patients with type 1 diabetes. J Clin Endocrinol Metab 88:4857–4861

    Article  CAS  PubMed  Google Scholar 

  5. Hovind P, Hansen TK, Tarnow L et al (2005) Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes: an inception cohort study. Diabetes 54:1523–1527

    Article  CAS  PubMed  Google Scholar 

  6. Saraheimo M, Forsblom C, Hansen TK et al (2004) Increased levels of mannan-binding lectin in type 1 diabetic patients with incipient and overt nephropathy. Diabetologia 48:198–202

    Article  PubMed  Google Scholar 

  7. Østergaard J, Thiel S, Gadjeva M, Hansen TK, Rasch R, Flyvbjerg A (2007) Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced model of type 1 diabetes in mice. Diabetologia 50:1541–1549

    Article  PubMed  Google Scholar 

  8. Østergaard JA, Bjerre M, Ramachandrarao SP et al (2012) Mannan-binding lectin in diabetic kidney disease: the impact of mouse genetics in a type 1 diabetes model. Exp Diabetes Res 2012:1–9

    Article  Google Scholar 

  9. Zacho RM, Jensen L, Terp R, Jensenius JC, Thiel S (2012) Studies of the pattern recognition molecule H-ficolin: specificity and purification. J Biol Chem 287:8071–8081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Acosta JA, Benzaquen LR, Goldstein DJ, Tosteson MT, Halperin JA (1996) The transient pore formed by homologous terminal complement complexes functions as a bidirectional route for the transport of autocrine and paracrine signals across human cell membranes. Mol Med 2:755–765

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Halperin JA, Nicholson-Weller A, Brugnara C, Tosteson DC (1988) Complement induces a transient increase in membrane permeability in unlysed erythrocytes. J Clin Invest 82:594–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Halperin JA, Taratuska A, Nicholson-Weller A (1993) Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells. J Clin Invest 91:1974–1978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Halperin JA, Taratuska A, Rynkiewicz M, Nicholson-Weller A (1993) Transient changes in erythrocyte membrane permeability are induced by sublytic amounts of the complement membrane attack complex (C5b-9). Blood 81:200–205

    CAS  PubMed  Google Scholar 

  14. Fosbrink M, Niculescu F, Rus H (2005) The role of c5b-9 terminal complement complex in activation of the cell cycle and transcription. Immunol Res 31:37–46

    Article  CAS  PubMed  Google Scholar 

  15. Benzaquen LR, Nicholson-Weller A, Halperin JA (1994) Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med 179:985–992

    Article  CAS  PubMed  Google Scholar 

  16. Wagner C, Braunger M, Beer M, Rother K, Hansch GM (1994) Induction of matrix protein synthesis in human glomerular mesangial cells by the terminal complement complex. Exp Nephrol 2:51–56

    CAS  PubMed  Google Scholar 

  17. Hovind P, Tarnow L, Rossing P et al (2004) Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328:1105

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hovind P, Tarnow L, Rossing K et al (2003) Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care 26:1258–1264

    Article  PubMed  Google Scholar 

  19. Sallenbach S, Thiel S, Aebi C et al (2011) Serum concentrations of lectin-pathway components in healthy neonates, children and adults: mannan-binding lectin (MBL), M-, L-, and H-ficolin, and MBL-associated serine protease-2 (MASP-2). Pediatr Allergy Immunol 22:424–430

    Article  PubMed  Google Scholar 

  20. Parving HH, Lehnert H, Brochner-Mortensen J et al (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345:870–878

    Article  CAS  PubMed  Google Scholar 

  21. Viberti G, Mogensen CE, Groop LC, Pauls JF (1994) Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA 271:275–279

    Article  CAS  PubMed  Google Scholar 

  22. Feldt-Rasmussen B, Dinesen B, Deckert M (1985) Enzyme immunoassay: an improved determination of urinary albumin in diabetics with incipient nephropathy. Scand J Clin Lab Invest 45:539–544

    Article  CAS  PubMed  Google Scholar 

  23. Rossing P, Hommel E, Smidt UM, Parving HH (1993) Impact of arterial blood pressure and albuminuria on the progression of diabetic nephropathy in IDDM patients. Diabetes 42:715–719

    Article  CAS  PubMed  Google Scholar 

  24. Lizana J, Hellsing K (1974) Polymer enhancement of automated immunological nephelometric analysis, as illustrated by determination of urinary albumin. Clin Chem 20:415–420

    CAS  PubMed  Google Scholar 

  25. Miles DW, Mogensen CE, Gundersen HJ (1970) Radioimmunoassay for urinary albumin using a single antibody. Scand J Clin Lab Invest 26:5–11

    Article  CAS  PubMed  Google Scholar 

  26. Krarup A, Sorensen UB, Matsushita M, Jensenius JC, Thiel S (2005) Effect of capsulation of opportunistic pathogenic bacteria on binding of the pattern recognition molecules mannan-binding lectin, L-ficolin, and H-ficolin. Infect Immun 73:1052–1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Levey AS, Coresh J, Balk E et al (2003) National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 139:137–147

    Article  PubMed  Google Scholar 

  28. Fortpied J, Vertommen D, Van Schaftingen E (2010) Binding of mannose-binding lectin to fructosamines: a potential link between hyperglycaemia and complement activation in diabetes. Diabetes Metab Res Rev 26:254–260

    Article  CAS  PubMed  Google Scholar 

  29. Fan WX, Huang SM, Liu F et al (2011) Activation of the lectin complement pathway on human renal glomerular endothelial cells triggered by high glucose and mannose-binding lectin. Afr J Biotechnol 10:18539–18549

    CAS  Google Scholar 

  30. Acosta J, Hettinga J, Fluckiger R et al (2000) Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci U S A 97:5450–5455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Qin X, Goldfine A, Krumrei N et al (2004) Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 53:2653–2661

    Article  CAS  PubMed  Google Scholar 

  32. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1:237–243

    Article  CAS  PubMed  Google Scholar 

  33. Brownlee M, Vlassara H, Cerami A (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101:527–537

    Article  CAS  PubMed  Google Scholar 

  34. Uesugi N, Sakata N, Nangaku M et al (2004) Possible mechanism for medial smooth muscle cell injury in diabetic nephropathy: glycoxidation-mediated local complement activation. Am J Kidney Dis 44:224–238

    Article  CAS  PubMed  Google Scholar 

  35. Kilpatrick DC, Downing I, MacDonald SL, Turner ML (2007) MBL really binds to healthy human cells! Scand J Immunol 66:599–600

    Article  CAS  PubMed  Google Scholar 

  36. Takabayashi T, Vannier E, Clark BD et al (1996) A new biologic role for C3a and C3a desArg: regulation of TNF-alpha and IL-1 beta synthesis. J Immunol 156:3455–3460

    CAS  PubMed  Google Scholar 

  37. Laudisi F, Spreafico R, Evrard M et al (2013) Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1beta release. J Immunol 191:1006–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126:2903–2913

    Article  CAS  PubMed  Google Scholar 

  39. Asgari E, Le Friec G, Yamamoto H et al (2013) C3a modulates IL-1beta secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 122:3473–3481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Danish Diabetes Academy is thanked for supporting this study.

Funding

This work was supported by the Novo Nordisk Foundation and research grants from the Danish Diabetes Academy supported by the Novo Nordisk Foundation.

Duality of interest

No potential conflicts of interest relevant to this article were reported. PR reports having received lecture fees from Novartis Sanofi, Bristol Myers Squibb, Astra Zeneca and Boehringer Ingelheim, and a research grant from Novo Nordisk and Novartis; he has also served as a consultant for Merck, Astra Zeneca BMS and has equity interest in Novo Nordisk.

Contribution statement

All authors contributed to the conception and design of the study; the collection, research and interpretation of the data; and to the review and editing of the manuscript. JAØ wrote the manuscript draft. All authors approved the final version. JAØ and TKH are the guarantors of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob A. Østergaard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Østergaard, J.A., Thiel, S., Hovind, P. et al. Association of the pattern recognition molecule H-ficolin with incident microalbuminuria in an inception cohort of newly diagnosed type 1 diabetic patients: an 18 year follow-up study. Diabetologia 57, 2201–2207 (2014). https://doi.org/10.1007/s00125-014-3332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3332-7

Keywords

Navigation