Skip to main content
Log in

Genetic diversity and parentage analysis of grape rootstocks

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The maternal and paternal parentage of 36 rootstocks was determined and verified. The results of this study indicate that existing grape rootstocks are closely related to each other and have a narrow genetic background.

Abstract

Rootstocks are used to protect grapevines from biotic and abiotic stresses including phylloxera, nematodes, viruses, limestone-based soils, salinity and drought. The most important rootstocks were developed from three grape species between the 1890s and the 1930s in European breeding programs. In this report, we developed nuclear and chloroplast SSR fingerprint data from rootstock selections maintained in germplasm collections, compared them to develop a reference dataset, and carried out parentage analysis to resolve previously reported, and determine new, breeding records. We refined and updated the parentage of 26 rootstocks based on 21 nuclear and 14 chloroplast markers. Results indicate that 39% of the genetic background of analyzed rootstocks originated from only three accessions of three grape species: Vitis berlandieri cv. Rességuier 2, V. rupestris cv. du Lot and V. riparia cv. Gloire de Montpellier. Results determined that Rességuier 2 is the maternal parent for 14 commercial rootstocks, 9 of which are full-sibs with Gloire de Montpellier as the paternal parent. Similarly, du Lot is the paternal parent of nine rootstocks. The pedigree information for 28 rootstocks was determined or corrected in this study. The previously reported pedigree information for eight of the rootstocks was correct. The results found that the world’s existing rootstocks have a narrow genetic base derived from only a few American grape species. Future rootstock breeding efforts should use a more diverse array of species to combat a changing climate and pest pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antcliff AJ, Newman HP, Barrett HC (1983) Variation in chloride accumulation in some American species of grapevine. Vitis 22:357–362

    CAS  Google Scholar 

  • Bakonyi K, Kocsis L (2004) Teleki Zsigmond Élete és Munkássága. (Life and Activity of Sigismund Teleki) VE. Georgikon Mezőgazdasági Kar, Keszthely

  • Bavaresco L, Gardiman M, Brancadoro L, Espen L, Failla O, Scienza A, Vezzulli S, Zulini L, Velasco R, Stefanini M, Di Gaspero G (2015) Grapevine breeding programs in Italy. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Cambridge, pp 135–155

    Chapter  Google Scholar 

  • Boubals D (1966) Etude de la distribution et des causes de le resistance au phylloxera radiciole chez les Vitacees. Ann Amelior Plantes 16:145–184

    Google Scholar 

  • Bourquin J-C, Otten L, Walter B (1991) Identification of grapevine rootstocks by RFLP. C R Acad Sci Paris 312:593–598

    CAS  Google Scholar 

  • Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246

    CAS  Google Scholar 

  • Bradley RG, Malstaff G (2004) Dry periods and drought events of the Edwards Plateau, Texas. In: Mace RE, Angle ES, Mullican WF (eds) Aquifers of the Edwards Plateau. Texas Water Development Board, Austin, pp 201–210

    Google Scholar 

  • Bryan GJ, McNicoll J, Ramsay G, Meyer RC, De Jong WS (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet 99:859–867

    Article  CAS  Google Scholar 

  • Campbell C (2006) The botanist and the Vintner: How wine was saved for the world. Algonquin Books, Chapel Hill

    Google Scholar 

  • Chung SM, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet 107:757–776

    Article  CAS  PubMed  Google Scholar 

  • Crespan M, Meneghetti S, Cancellier S (2009) Identification and genetic relationship of the principal rootstocks cultivated in Italy. Am J Enol Vitic 60:349–356

    CAS  Google Scholar 

  • de Andrés MT, Cabezas JA, Cervera MT, Borrego J, Martinez-Zapater JM, Jouve N (2007) Molecular characterization of grapevine rootstocks maintained in germplasm collections. Am J Enol Vitic 58:75–86

    Google Scholar 

  • Downton WJS (1977) Chloride accumulation in different species of grapevine. Sci Hortic 7:249–253

    Article  CAS  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Soft 22:1–20

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Ferris H, Zheng L, Walker MA (2012) Resistance of grape rootstocks to plant-parasitic nematodes. J Nematol 44:377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foëx G (1902) Manual of Modern Viticulture: Reconstitution with American Vines. Translated from the sixth French edition by R. Dubois and W.P. Wilkinson. Robert. S. Brain, Government Printer, Melbourne, Australia

  • Gambetta GA, Manuck CM, Drucker ST, Shaghasi T, Fort K, Matthews MA, Walker MA, McElrone AJ (2012) The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? J Exp Bot 63:6445–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garris A, Cousins P, Ramming D, Baldo A (2009) Parentage analysis of Freedom rootstock. Am J Enol Vitic 60:357–361

    Google Scholar 

  • Gerber S, Chabrier P, Kremer A (2003) FaMoz: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3:479–481

    Article  CAS  Google Scholar 

  • Granett J, Omer AD, Walker MA (2001) Seasonal capacity of attached and detached vineyard roots to support grape phylloxera (Homoptera: Phylloxeridae). J Econ Entomol 94:138–144

    Article  CAS  PubMed  Google Scholar 

  • Granett J, Walker MA, Fossen MA (2005) Association between grape phylloxera and strongly resistant rootstocks in California: bioassays. In: IIIrd international grapevine phylloxera symposium, vol 733, pp 25–31

  • Grzegorczyk W, Walker MA (1998) Evaluating resistance to grape phylloxera in Vitis species with an in vitro dual culture assay. Am J Enol Vitic 49:17–22

    Google Scholar 

  • Guerra B, Meredith CP (1995) Comparison of Vitis berlandieri x Vitis riparia rootstock cultivars by restriction fragment length polymorphism analysis. Vitis 34:109–112

    Google Scholar 

  • Hajdu E (2015) Grapevine breeding in Hungary. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Cambridge, pp 103–134

    Chapter  Google Scholar 

  • Heinitz C (2016) Characterization of Vitis species from the southwest United States and Mexico for breeding and conservation. University of California, Davis, ProQuest Dissertations Publishing, 10194819

  • Henderson SW, Baumann U, Blackmore DH, Walker AR, Walker RR, Gilliham M (2014) Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biol 14:1–18

    Article  CAS  Google Scholar 

  • Jahnke G, Kocsisné Molnár G, Májer J, Szőke B, Tarczal E, Varga P, Kocsis L (2011) Analysis of grape rootstocks by SSR markers. J Int Sci Vigne Vin 45:199–210

    CAS  Google Scholar 

  • Kocsis L, Granett J, Walker MA, Lin H, Omer AD (1999) Grape phylloxera populations adapted to Vitis berlandieri X V. riparia rootstocks. Am J Enol Vitic 50:101–106

    Google Scholar 

  • Lacombe T, Boursiquot JM, Laucou V, Vecchi-Staraz M, Peros JP, This P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414

    Article  PubMed  Google Scholar 

  • Laucou V, Boursiquot JM, Lacombe T, Bordenave L, Decroocq S, Ollat N (2008) Parentage of grapevine rootstock ‘Fercal’ finally elucidated. Vitis 47:163–167

    Google Scholar 

  • Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Varès D, Péros JP, Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Walker MA (1998) Identifying grape rootstocks with simple sequence repeat (SSR) DNA markers. Am J Enol Vitic 49:403–407

    CAS  Google Scholar 

  • Lund KT, Riaz S, Walker MA (2017) Population structure, diversity and reproductive mode of the grape phylloxera (Daktulosphaira vitifoliae) across its native range. PLoS ONE 12:e0170678. https://doi.org/10.1371/journal.pone.0170678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manty F (2005) Hintergrunde zur Entstehung der Bezeichnungen der Unterlagenselektionen von Sigmund Teleki und Franz Kober. Deutsches Weinbau-Jahrbuch 2006 57:159–164

    Google Scholar 

  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon A-F, Decroocq S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366

    Article  CAS  Google Scholar 

  • Millardet A (1885) Histoire des Principales Variétés et Espèces de Vigne d’Origine Américaine qui Résistent au Phylloxéra (Paris, France)

  • Morano LD, Walker MA (1995) Soils and plant communities associated with three Vitis species. Am Midl Nat 134:254–263. https://doi.org/10.2307/2426296

    Article  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Munson TV (1909) Foundations of American grape culture. Orange Judd Company, New York

    Book  Google Scholar 

  • Newman HP, Antcliff AJ (1983) Chloride accumulation in some hybrids and backcrosses of Vitis berlandieri and Vitis vinifera. Vitis 23:106–112

    Google Scholar 

  • Ollat N, Peccoux A, Papura D, Esmenjaud D, Marguerit E, Tandonnet JP, Bordenave L, Cookson SJ, Barrieu F, Rossdeutsch L, Lecourt J, Lauvergeat V, Vivin P, Bert P-F, Delrot S (2016) Rootstocks as a component of adaptation to environment. In: Geros H, Chaves MM, Medrano H, Delrot S (eds) Grapevine in a changing environment: a molecular and ecophysiological perspective, 1st edn. Wiley, New York, pp 68–108

    Chapter  Google Scholar 

  • Pap D, Miller AJ, Londo JP, Kovács LG (2015) Population structure of Vitis rupestris, an important resource for viticulture. Am J Enol Vitic 66:403–410

    Article  CAS  Google Scholar 

  • Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16(1):170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pap D, Lund KT, Riaz S, Walker MA (2018) California isolates of grape phylloxera (Daktulosphaira vitifoliae) exhibit diverse feeding behavior. Am J Enol Vitic (submitted)

  • Pavloušek P (2015) Grapevine breeding in Central and Eastern Europe. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Cambridge, pp 211–244

    Chapter  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péros JP, Berger G, Portemont A, Boursiquot JM, Lacombe T (2011) Genetic variation and biogeography of the disjunct Vitis subg. Vitis (Vitaceae). J Biogeog 38:471–486

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/

  • Poczai P, Hyvönen J, Taller J, Jahnke G, Kocsis L (2013) Phylogenetic analyses of Teleki grapevine rootstocks using three chloroplast DNA markers. Plant Mol Biol Report 31:371–386

    Article  CAS  Google Scholar 

  • Pongrácz DP (1983) Rootstocks for Grape-vines. David Philip Publisher, Cape Town

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravaz L (1902) Les Vignes Américaines: Porte-Greffes et Producteurs Directs (Montpellier, France)

  • Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Badenes ML, Byrne DH (eds) Fruit breeding, handbook of plant breeding 8. Springer Science + Business Media, LLC, New York, pp 225–262

    Google Scholar 

  • Ruehl E, Schmid J, Eibach R, Töpfer R (2015) Grapevine breeding programs in Germany. Grapevine breeding programs for the wine industry. Woodhead Publishing, Oxford, pp 77–101

    Book  Google Scholar 

  • Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373

    Article  CAS  PubMed  Google Scholar 

  • This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibáñez J, Lacombe T, Laucou V, Magalhães R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Scott N (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay A, Saboji MD, Reddy S, Deokar K, Karibasappa GS (2007) AFLP and SSR marker analysis of grape rootstocks in Indian grape germplasm. Sci Hortic 112:176–183

    Article  CAS  Google Scholar 

  • Uretksy J (2018) Genetic and ecological characterization of Vitis berlandieri Planch. and associated taxa for breeding grape rootstocks. University of California, Davis, ProQuest Dissertations Publishing, 18058

  • Viala P, Ravaz L (1903) American vines (resistant stock): their adaptation, culture. Press of Freygang-Leary Company, Grafting and Propagation

    Google Scholar 

  • Walker MA, Liu L (1995) The use of isozymes to identify 60 grapevine rootstocks (Vitis spp.). Am J Enol Vitic 46:299–305

    CAS  Google Scholar 

  • Walker RR, Blackmore DH, Clingeleffer PR, Correll RL (2002) Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). 1. Yield and vigour interrelationships. Austral J Grape Wine Res 8:3–14

    Article  Google Scholar 

  • Walker RR, Blackmore DH, Clingeleffer PR, Correll RL (2004) Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) 2. ion concentrations in leaves and juice. Austral J Grape Wine Res 10:90–99

    Article  CAS  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding support of the California Grape Rootstock Improvement Commission, the American Vineyard Foundation and the Louise Rossi Endowed Chair in Viticulture funds. They also gratefully acknowledge the research support of Rong Hu and Nina Romero.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Andrew Walker.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by Reinhard Toepfer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Pap, D., Uretsky, J. et al. Genetic diversity and parentage analysis of grape rootstocks. Theor Appl Genet 132, 1847–1860 (2019). https://doi.org/10.1007/s00122-019-03320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03320-5

Navigation