Skip to main content
Log in

Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The wheat and rye spike normally bears one spikelet per rachis node, and the appearance of supernumerary spikelets is rare. The loci responsible for the ‘multirow spike’ or MRS trait in wheat, and the ‘monstrosum spike’ trait in rye were mapped by genotyping F2 populations with microsatellite markers. Both MRS and the ‘monstrosum’ trait are under the control of a recessive allele at a single locus. The Mrs1 locus is located on chromosome 2DS, co-segregating with the microsatellite locus Xwmc453. The placement of flanking microsatellite loci into chromosome deletion bin 2DS-5 (FL 0.47–1.0) delimited the physical location of Mrs1 to the distal half of chromosome arm 2DS, within the gene rich region 2S0.8. The Mo1 locus maps about 10 cM from the centromere on chromosome arm 2RS. The similar effect on phenotype of mo1 and mrs1, together with their presence in regions of conserved synteny, suggest that they may well be members of an orthologous set of Triticeae genes governing spike branching. The practical importance of the MRS spike is that it produces more spikelets per spike, and thereby enhances the sink capacity of wheat, which is believed to limit the yield potential of the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Benito C, Zaragoza C, Gallego FJ, De la Pena A, Figueiras AM (1991) A map of rye chromosome 2R using isozyme and morphological markers. Theor Appl Genet 82:112–116

    CAS  Google Scholar 

  • Castiglioni P, Pozzi C, Heun M, Terzi V, Muller KJ, Rohde W, Salamini F (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056

    PubMed  CAS  Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Gene Dev 12:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241

    Article  PubMed  CAS  Google Scholar 

  • De Vries JN, Sybenga J (1984) Chromosomal location of 17 monogenically inherited morphological markers in rye (Secale cereale L.) using the translocation tester set. Z Pflanzenzücht 92:117–139

    Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pe ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635

    Article  PubMed  CAS  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, V2 genomics applications in crops. Springer, Dordrecht, The Netherlands, pp 1–24

    Chapter  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards J, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  Google Scholar 

  • Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Klindworth DL, Williams ND, Joppa LR (1990a) Inheritance of supernumerary spikelets in a tetraploid wheat cross. Genome 33:509–514

    CAS  Google Scholar 

  • Klindworth DL, Williams ND, Joppa LR (1990b) Chromosomal location of genes for supernumerary spikelets in tetraploid wheat. Genome 33:515–520

    CAS  Google Scholar 

  • Klindworth DL, Klindworth MM, Williams ND (1997) Telosomic mapping of four genetic markers in durum wheat. J Hered 88:229–232

    Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003a) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 100:11765–11770

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003b) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  PubMed  CAS  Google Scholar 

  • Koric S (1973) Branching genes in Triticum aestivum. In: Sears ER, Sears LMS (eds) Proceeding of the 4th international wheat genetics symposium, Columbia, Mo, USA, pp 283–288

  • Koric S (1980) Study of branched gene complex of T. aestivum ssp. vulgare and its significance for wheat breeding. J Sci Agric Res 142:271–282

    Google Scholar 

  • Korzun V, Malyshev S, Voylokov A, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Kosambi D (1944) Estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Košner J, Foltýn J (1989) Chromozomalní poměry pšenice obecné (Triticum aestivum L.) s větevnatým klasem. Sbor ÚVTIZ Genet Šlecht 25(1):11–17

    Google Scholar 

  • Kuperman FM (1968) Plant morphophysiology. Visshaya Shkola, Moscow, pp 79–83 in Russian

    Google Scholar 

  • Lander E, Green P, Barlow A, Daley P, Stein L et al (1987) MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Laykova LI, Arbuzova VS, Popova OM, Efremova TT, Melnick VM (2005) Study on spike branching in the T. aestivum mutant lines (cv. Saratovskaya29). In: Goncharov PL, Zilke RA, Gordeeva TN (eds) Proceeding of the IX workshop on genetics and breeding, Novosibirsk, Russia, pp 388–393 (in Russian)

  • Malyshev SV, Dolmatovich TV, Voylokov AV, Sosnikhina SP, Kartel NA (2007) Molecular markers linked to the synaptic genes in rye (Secale cereale L.). Proceedings of international symposium on rye breeding and genetics, Rostock (Germany), vol 71, Vortr Pflanzenzuecht, 28–30 June, 2006, pp 257–259

  • Martinek P, Bednar J (2001) Changes of spike morphology (multirow spike—MRS, long glumes—LG) in wheat (Triticum aestivum L.) and their importance for breeding. In: The proceedings of international conference «genetic collections, isogenic and alloplasmic lines» Novosibirsk, Russia, pp 192–194

  • Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat: how could it be reduced? J Agr Sci 145:139–149

    Article  Google Scholar 

  • Peng ZS, Yen C, Yang JL (1998) Chromosomal location of genes for supernumerary spikelet in bread wheat. Euphytica 103:109–114

    Article  Google Scholar 

  • Pennell AL, Halloran GM (1983) Inheritance of supernumerary spikelets in wheat. Euphytica 32:767–776

    Article  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 4:689–697

    Article  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Reynolds MP, Pellegrineschi A, Skowmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146:39–49

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet 112:1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Scholz F, Lehmann O (1958) Die Gaterslebener Mutanten der Saatgerste in Beziehung zur Formenmannigfaltigkeit der Art Hordeum vulgare L.s.l.I. Kulturpflanzen 6:123–166

    Article  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. University of Missouri, Columbia, Mo, pp 3–58

    Google Scholar 

  • Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium, Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 29–45

  • Sharman BC (1944) Branched head in wheat and wheat hybrids. Nature 153:497–498

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Swaminathan MS, Chopra VL, Sastry GRK (1966) Expression and stability of an induced mutation for ear branching in bread wheat. Curr Sci 35:91–92

    Google Scholar 

  • Ullmannová K, Bednař J, Martinek P (2006) Analysis of apex organogenesis in selected T. aestivum genotypes with different spike morphotype. In: Proceeding of the conference MendelNet’06 Agro, vol 118, Mendel Agricultural and Forestry University, Brno, Czech Republic, 2006. ISBN 80-7157-999-8

  • Wang Z-L, Yin Y-P, He M-R, Cao H-M (1998) Source-sink manipulation effects on postanthesis photosynthesis and grain setting on spike in winter wheat. Photosynthetica 35:453–459

    Article  Google Scholar 

  • Yang W-Y, Lu B-R, Hu X-R, Yu Y, Zhang Y (2005) Inheritance of the triple-spikelet character in a Tibetan landrace of common. Genet Resour Crop Ev 52:847–851

    Article  Google Scholar 

  • Yu J-K, Dake T, Singh S, Benscher D, Li W, Gill B, Sorrells M (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY (2006) Study of the transferability of microsatellite markers derived from bread wheat (T. aestivum) or rice (O. zsativa) ESTs (EST-SSRs) to their close and wild relatives and evaluation of their potential for the organization of genetic resources. PhD Thesis, Université Blaise Pascal, Clermont-Ferrand, France. No DU 1650; Order no 437, pp 160

  • Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported in part by the Deutsche Forschungsgemeinschaft (project BO 1423/6-1), the SB RAS program “Biodiversity” N 23.28, and by the Ministry of Education, Youth and Sports of the Czech Republic (project MSM 2532885901, work package E). The authors would like to thank the anonymous referees for helpful comments and suggestions on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana Dobrovolskaya.

Additional information

Communicated by A. Schulman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrovolskaya, O., Martinek, P., Voylokov, A.V. et al. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor Appl Genet 119, 867–874 (2009). https://doi.org/10.1007/s00122-009-1095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1095-1

Keywords

Navigation