Skip to main content
Log in

How do the substrate reaction forces acting on a gecko’s limbs respond to inclines?

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko’s SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0–180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko’s front and hind limbs are reassigned to take full advantage of limbs’ different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-flair. Nature 405:681–685

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Buehler M, Cutkosky M, Fearing R, Full RJ, Goldman D, Groff R, Provancher W, Rizzi AA, Saranli U (2005) Robotics in scansorial environments. Proc SPIE 5804:291–302

    Article  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006a) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569–3579

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006b) Dynamics of geckos running vertically. J Exp Biol 209:260–272

    Article  CAS  PubMed  Google Scholar 

  • Bauer AM, Russell AP, Powell GL (1996) The evolution of locomotor morphology in Rhoptropus (Squamata: Gekkonidae): functional and phylogenetic considerations. Afr J Herpetol 45:8–30

    Article  Google Scholar 

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–R261

    CAS  PubMed  Google Scholar 

  • Chateau H, Robin D, Simonelli T, Pacquet L, Pourcelot P, Falala S, Crevier-Denoix N (2009) Design and validation of a dynamometric horseshoe for the measurement of three-dimensional ground reaction force on a moving horse. J Biomech 42:336–340

    Article  PubMed  Google Scholar 

  • Chen JJ, Peattie AM, Autumn K, Full RJ (2006) Differential leg function in a sprawled-posture quadrupedal trotter. J Exp Biol 209:249–259

    Article  CAS  PubMed  Google Scholar 

  • Chen BB, Wu PD, Gao HJ (2009) Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J R Soc Interface 6:529–537

    Article  PubMed Central  PubMed  Google Scholar 

  • Dai ZD, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 205:2479–2488

    PubMed  Google Scholar 

  • Dai ZD, Wang ZY, Ji AH (2011) Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces. J Exp Biol 214:701–706

    Article  Google Scholar 

  • Dai ZD, Wang ZY, Ren L, Ji AH (2013) Dynamics of gecko locomotion: patterns of reaction forces on inverted, vertical and horizontal substrates. 4th ICBE

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–108

    Article  CAS  PubMed  Google Scholar 

  • Dutto DJ, Hoyt DF, Cogger EA, Wickler SJ (2004) Ground reaction forces in horses trotting up an incline and on the level over a range of speeds. J Exp Biol 207:3507–3514

    Article  PubMed  Google Scholar 

  • Endlein T, Ji AH, Samue D, Yao N, Wang ZY, Barnes WJP, Federle W, Kappl M, Dai ZD (2013) Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces. J R Soc Interface 10:1743–1752

    Article  Google Scholar 

  • Federle W, Barnes WJP, Baumgartner W, Drechsler P, Smith JM (2006) Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface 3:689–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foster KL, Higham TE (2012) How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. J Exp Biol 215:2288–2300

    Article  PubMed  Google Scholar 

  • Garland TJ, Losos JB (1994) Ecological morphology of locomotor performance in squamate reptiles. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp 240–302

    Google Scholar 

  • Gillies AG, Henry A, Lin H, Ren A, Shiuan K, Fearing RS, Full RJ (2014) Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces. J Exp Biol 217:283–289

    Article  PubMed  Google Scholar 

  • Goldman DI, Chen TS, Dudek DM, Full RJ (2006) Dynamics of rapid vertical climbing in cockroaches reveals a template. J Exp Biol 209:2990–3000

    Article  PubMed  Google Scholar 

  • Gravish N, Wilkinson M, Autumn K (2008) Frictional and elastic energy in gecko adhesive detachment. J R Soc Interface 5:339–348

    Article  PubMed Central  PubMed  Google Scholar 

  • Han LB, Wang ZY, Ji AH, Dai ZD (2011) Grip and detachment of locusts on inverted substrates. Bioinspir Biomim 6:386–392

    Article  Google Scholar 

  • Holmes P, Full R, Koditschek D, Guckenheimer J (2006) Dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev 48:207–304

    Article  Google Scholar 

  • Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci U S A 102:16293–16296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krause C, Fischer MS (2013) Biodynamics of climbing: effects of substrate orientation on the locomotion of a highly arboreal lizard (Chamaeleo calyptratus). J Exp Biol 216:1448–1457

    Article  PubMed  Google Scholar 

  • Lammers AR (2007) Locomotor kinetics on inclined arboreal and terrestrial substrates in a small quadrupedal mammal. Zoology 110:93–103

    Article  PubMed  Google Scholar 

  • Lammers AR, Gauntner T (2008) Mechanics of torque generation during quadrupedal arboreal locomotion. J Biomech 41:2388–2395

    Article  PubMed  Google Scholar 

  • Lammers AR, Earls KD, Biknevicius AR (2006) Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica. J Exp Biol 209:4154–4166

    Article  PubMed  Google Scholar 

  • Lee DV (2011) Effects of grade and mass distribution on the mechanics of trotting in dogs. J Exp Biol 214:402–411

    Article  PubMed  Google Scholar 

  • Lee D, Bertram J, Todhunter R (1999) Acceleration and balance in trotting dogs. J Exp Biol 202:3565–3573

    CAS  PubMed  Google Scholar 

  • Lee DV, Stakebake EF, Walter RM, Carrier DR (2004) Effects of mass distribution on the mechanics of level trotting in dogs. J Exp Biol 207:1715–1728

    Article  PubMed  Google Scholar 

  • Peattie AM, Majidi C, Corder A, Full RJ (2007) Ancestrally high elastic modulus of gecko setal β-keratin. J R Soc Interface 4:1071–1076

    Article  PubMed Central  PubMed  Google Scholar 

  • Pesika NS, Tian Y, Zhao B, Rosenberg K, Zeng H, McGuiggan P, Israelachvili JN (2007) Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes 83:383–401

    Article  CAS  Google Scholar 

  • Ren L, Miller CE, Lair R, Hutchinson JR (2010) Integration of biomechanical compliance, leverage, and power in elephant limbs. Proc Natl Acad Sci U S A 107:7078–7082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rizzo NW, Gardner KH, Walls DJ, Keiper-Hrynko NM, Ganzke TS, Hallahan DL (2006) Characterization of the structure and composition of gecko adhesive setae. J R Soc Interface 3:441–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robin D, Chateau H, Jacobs F, Estoup P, Holden L, Falala S, Crevier-Denoix N (2010) Suitability of a dynamometric horseshoe for the recording of the ground reaction forces on ridden horses. Comput Method Biomech 13:129–131

    Article  Google Scholar 

  • Schmidt A, Fischer MS (2010) Arboreal locomotion in rats—the challenge of maintaining stability. J Exp Biol 213:3615–3624

    Article  PubMed  Google Scholar 

  • Schmidt A, Fischer MS (2011) The kinematic consequences of locomotion on sloped arboreal substrates in a generalized (Rattus norvegicus) and a specialized (Sciurus vulgaris) rodent. J Exp Biol 214:2544–2559

    Article  Google Scholar 

  • Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment. Proc Natl Acad Sci U S A 103:19320–19325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang ZY, Gu WH, Wu Q, Ji AH, Dai ZD (2010a) Morphology and reaction force of toes of geckos freely moving on ceilings and walls. Sci China Technol Sci 53:1688–1693

    Article  Google Scholar 

  • Wang ZY, Wang JT, Ji AH, Dai ZD (2010b) Locomotion behavior and dynamics of geckos freely moving on the ceiling. Chin Sci Bull 55:3356–3362

    Article  Google Scholar 

  • Wang ZY, Wang JT, Ji AH, Zhang YY, Dai ZD (2011) Behavior and dynamics of gecko locomotion: effects of moving directions on vertical surface. Chin Sci Bull 56:573–583

    Article  Google Scholar 

  • Wang ZY, Song Y, Dai ZD (2013) Use of opposite frictional forces by animals to increase their attachment reliability during movement. Friction 1:143–149

    Article  Google Scholar 

  • Wang ZY, Ji AH, Endlein T, Li W, Samuel D, Dai ZD (2014) Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines. Chin Sci Bull 59:4568–4577

    Article  Google Scholar 

  • Willey JW, Biknevicius AR, Reilly SM, Earls KD (2004) The tale of the tail: limb function and locomotor mechanics in Alligator mississippiensis. J Exp Biol 207:553–563

    Article  PubMed  Google Scholar 

  • Yu X, Peng Y, Aowphol A, Ding L, Brauth SE, Tang YZ (2011) Geographic variation in the advertisement calls of Gekko gecko in relation to variations in morphological features: implications for regional population differentiation. Ethol Ecol Evol 23:211–228

    Article  Google Scholar 

  • Zaaf A, Herrel A, Aerts P, De Vree F (1999) Morphology and morphometrics of the appendicular musculature in geckos with different locomotor habit (Lepidosaurians). Zoomorphology 219:11–22

    Google Scholar 

  • Zaaf A, Van Damme R, Herrel A, Aerts P (2001) Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko. J Exp Biol 204:1233–1246

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61175105 and 51435008), the Doctoral Fund of Ministry of Education of China (Grant No. 20123218110031), and the Fundamental Research Funds for the Central Universities (Grant Nos. CXZZ11_0198 and BCXJ10_10).

Conflict of interest

The authors declare no competing financial interests.

Author contributions

Z.D. designed the research; Z.W. and W. L. performed the research; W.W., Z.W., and A.J. analyzed the data; Z.W. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Dai.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Dai, Z., Li, W. et al. How do the substrate reaction forces acting on a gecko’s limbs respond to inclines?. Sci Nat 102, 7 (2015). https://doi.org/10.1007/s00114-015-1259-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1259-6

Keywords

Navigation