Skip to main content
Log in

Metabolische Kardiomyopathien

Metabolic cardiomyopathies

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Die Ätiologie von Kardiomyopathien im Kindesalter ist ausgesprochen heterogen, und nur bei dem kleineren Teil der Fälle kann heute eine Ursache gefunden werden. In diesem Beitrag wird die Rolle angeborener Stoffwechselstörungen an der Entstehung von Kardiomyopathien diskutiert. Glykogenspeicherkrankheiten, Mukopolysaccharidosen, Störungen der Fettsäureoxidation und der Atmungskette sind die wesentlichen Gruppen, bei denen eine Beteiligung des Myokards beobachtet wird. Vor dem Hintergrund möglicher Differenzialdiagnosen wird ein systematisches diagnostisches Vorgehen vorgeschlagen, wozu eine enge Zusammenarbeit von Kinderkardiologen und Stoffwechselmedizinern erforderlich ist. Ziel ist eine Verminderung der Anzahl „idiopathischer“ Kardiomyopathien, damit eine an der Pathogenese orientierte Therapie und eine Verbesserung der bisher schlechten Prognose, zumindest aber eine Diagnose als Grundlage für die genetische Beratung betroffener Familien.

Abstract

Cardiomyopathies of infancy and childhood show a very heterogeneous etiology and only in a minority of cases can a cause be identified. In this article, the role of inborn errors of metabolism in cases of cardiomyopathy in the pediatric population is discussed. Glycogen storage diseases, mucopolysaccharidoses, disorders of fatty acid oxidation, and oxidative phosphorylation are the major groups of diseases that show myocardial involvement. In view of possible differential diagnoses, a systematic diagnostic approach is suggested which requires close cooperation of pediatric cardiologists and metabolic specialists. It is the aim of this strategy to reduce the number of cases of “idiopathic” cardiomyopathy. This should have implications for treatment, should improve prognosis, and should provide a better basis for genetic counseling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Amalfitano A, Bengur AR, Morse RP et al. (2001) Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 3:132–138

    CAS  PubMed  Google Scholar 

  2. Arad M, Benson DW, Perez-Atayde AR et al. (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bartelds B, Gratama JW, Knoester H et al. (1998) Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol 274:H1962–1969

    CAS  PubMed  Google Scholar 

  4. Bonnet D, de Lonlay P, Gautier I et al. (1998) Efficiency of metabolic screening in childhood cardiomyopathies. Eur Heart J 19:790–793

    Article  CAS  PubMed  Google Scholar 

  5. Chen R, Tsuji T, Ichida F et al. (2002) Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol Genet Metab 77:319–325

    Article  CAS  PubMed  Google Scholar 

  6. Dangel JH (1998) Cardiovascular changes in children with mucopolysaccharide storage diseases and related disorders—clinical and echocardiographic findings in 64 patients. Eur J Pediatr 157:534–538

    Article  CAS  PubMed  Google Scholar 

  7. Dworzak FF, Casazza M, Mora R et al. (1994) Lysosomal glycogen storage with normal acid maltase: a familial study with successful heart transplant. Neuromuscul Disord 4:243–247

    Article  CAS  PubMed  Google Scholar 

  8. Elleder M, Shin YS, Zuntova A et al. (1993) Fatal infantile hypertrophic cardiomyopathy secondary to deficiency of heart specific phosphorylase b kinase. Virchows Arch A Pathol Anat Histopathol 423:303–307

    Article  CAS  PubMed  Google Scholar 

  9. Freisinger P, Horvath R, Macmillan C et al. (2004) Reversion of hypertrophic cardiomyopathy in a patient with deficiency of the mitochondrial copper binding protein Sco2: is there a potential effect of copper? J Inherit Metab Dis 27:67–79

    Article  CAS  PubMed  Google Scholar 

  10. Gehrmann J, Sohlbach K, Linnebank M et al. (2003) Cardiomyopathy in congenital disorders of glycosylation. Cardiol Young 13:345–351

    PubMed  Google Scholar 

  11. Lee PJ, Deanfield JE, Burch M et al. (1997) Comparison of the functional significance of left ventricular hypertrophy in hypertrophic cardiomyopathy and glycogenosis type III. Am J Cardiol 79:834–838

    Article  CAS  PubMed  Google Scholar 

  12. Lipshultz SE, Sleeper LA, Towbin JA et al. (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 348:1647–1655

    Article  PubMed  Google Scholar 

  13. Massoud AF, Leonard JV (1993) Cardiomyopathy in propionic acidaemia. Eur J Pediatr 152:441–445

    Article  CAS  PubMed  Google Scholar 

  14. Nishino I, Fu J, Tanji K et al. (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910

    Article  CAS  PubMed  Google Scholar 

  15. Nugent AW, Daubeney PE, Chondros P et al. (2003) The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 348:1639–1646

    Article  PubMed  Google Scholar 

  16. Papadopoulou LC, Sue CM, Davidson MM et al. (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23:333–337

    Article  CAS  PubMed  Google Scholar 

  17. Richard P, Charron P, Carrier L et al. (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232

    Article  PubMed  Google Scholar 

  18. Santer R, Fingerhut R, Lassker U et al. (2003) Tandem mass spectrometric determination of malonylcarnitine: diagnosis and neonatal screening of malonyl-CoA decarboxylase deficiency. Clin Chem 49:660–602

    Article  CAS  PubMed  Google Scholar 

  19. Santer R, Ullrich K (2004) Cardiac involvement in glycogen storage diseases. In: Böhles H, Sewell AC (eds) Metabolic cardiomyopathy. Medpharm Scientific Publishers, Stuttgart, S 47–65

  20. Schmitt JP, Kamisago M, Asahi M et al. (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–1413

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz ML, Cox GF, Lin AE et al. (1996) Clinical approach to genetic cardiomyopathy in children. Circulation 94:2021–2038

    Article  CAS  PubMed  Google Scholar 

  22. Sewell AC (2004) Laboratory diagnosis of metabolic diseases presenting with cardiomyopathy. In: Böhles H, Sewell AC (eds) Metabolic cardiomyopathy. Medpharm Scientific Publishers, Stuttgart, S 153–161

  23. Silvestri G, Santorelli FM, Shanske S et al. (1994) A new mtDNA mutation in the tRNA(Leu(UUR)) gene associated with maternally inherited cardiomyopathy. Hum Mutat 3:37–43

    Article  CAS  PubMed  Google Scholar 

  24. Sperl W (2004) Cardiomyopathies and mitochondrial defects of oxidative energy metabolism. In: Böhles H, Sewell AC (eds) Metabolic cardiomyopathy. Medpharm Scientific Publishers, Stuttgart, S 67–84

  25. Strauss A, Lock JE (2003) Pediatric cardiomyopathy—a long way to go. N Engl J Med 348:1703–1705

    Article  PubMed  Google Scholar 

  26. Sugie KA, Yamamoto K, Murayama SJ et al. (2002) Clinicopathological features of genetically confirmed Danon disease. Neurology 58:1773–1778

    Article  CAS  PubMed  Google Scholar 

  27. Tulinius MH, Holme E, Kristiansson B et al. (1991) Mitochondrial encephalomyopathies in childhood. II. Clinical manifestations and syndromes. J Pediatr 119:251–259

    Article  CAS  PubMed  Google Scholar 

  28. Valianpour F, Wanders RJ, Overmars H et al. (2003) Linoleic acid supplementation of Barth syndrome fibroblasts restores cardiolipin levels: implications for treatment. J Lipid Res 44:560–566

    Article  CAS  PubMed  Google Scholar 

  29. Wippermann CF, Beck M, Schranz D et al. (2004) Cardiovascular changes in the mucopolysaccharidoses. In: Böhles H, Sewell AC (eds) Metabolic cardiomyopathy. Medpharm Scientific Publishers, Stuttgart, S 99–112

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Santer.

Mehr Informationen zum Thema Metabolische Kardiomyopathien

Mehr Informationen zum Thema Metabolische Kardiomyopathien

Buchtipp

Metabolic Cardiomyopathy

Böhles H, Sewell AC (2004) Medpharm Scientific Publishers, Stuttgart, ISBN 3-88763-104-8. Preis: EUR 64,00

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santer, R. Metabolische Kardiomyopathien. Monatsschr Kinderheilkd 152, 639–648 (2004). https://doi.org/10.1007/s00112-004-0952-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-004-0952-x

Schlüsselwörter

Keywords

Navigation