Skip to main content
Log in

Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Coronary heart disease is a serious cardiovascular illness. Percutaneous coronary artery stent implantation has become a routine way to treat coronary heart disease. Although studies have shown how a drug-eluting stent could improve the efficacy of clinical treatment, 10~20% of in-stent restenosis is still an important outcome that restricts the clinical efficacy of drug-eluting stent implantations and causes cardiovascular events such as angina pectoris, acute myocardial infarction, and sudden death. The KCa3.1 channel plays an important role in neoatherosclerosis of in-stent restenosis by regulating macrophage function. Recent studies have shown that the KCa3.1 channel, which belongs to the family of calcium-activated potassium channels, plays an important role in the occurrence and development of various inflammatory diseases by regulating cell membrane potentials and calcium signaling in the processes of macrophage migration and mitogen-stimulated vascular smooth muscle cell and fibroblast proliferation. The KCa3.1 channel is activated by elevated intracellular calcium levels. Inhibition of the KCa3.1 channel can effectively slow the progression of arterial plaque rupture and reduce the degree of vascular restenosis, and so substances that can carry out this inhibition are expected to become targeted drugs for the treatment of in-stent neoatherosclerosis. This article reviews the pathological and physiological roles of the KCa3.1 channel and its roles in the disease prognosis of in-stent neoatherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

AP-1:

Activator protein-1

bFGF:

Basic fibroblast growth factor

BMS:

Bare metal stents

CHD:

Coronary heart disease

DES:

Drug-eluting stent

EDHF:

Endothelium-derived hyperpolarization factor

fMLP:

Formyl-Met-Leu-Phe

IFN-α:

Interferon alpha

ISNA:

In-stent neoatherosclerosis

ISR:

In-stent restenosis

KCa3.1 channel:

Intermediate-conductance Ca2+-activated K+ channels

LST:

Late-stent thrombosis

MCP-1:

Macrophage chemotactic protein 1

NFAT:

Nuclear factor of activated T cells

PTCA:

Percutaneous coronary angioplasty

PCI:

Percutaneous coronary intervention

PDGF:

Platelet-derived growth factor

MACE:

Sudden cardiac death

VSMC:

Vascular smooth muscle cell

TCR:

T cell receptor

References

  1. Garg S, Bourantas C, Serruys PW (2013) New concepts in the design of drug eluting coronary stents. Nat Rev Cardiol 10(5):248–260

    Article  CAS  PubMed  Google Scholar 

  2. Yang X, Li Y, Ren X, Xiong X, Wu L, Li J, Wang J, Gao Y, Shang H, Xing Y (2017) Effects of exercise-based cardiac rehabilitation in patients after percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Sci Rep 7:44789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hytonen JP, Taavitsainen J, Laitinen J et al (2018) Local adventitial anti-angiogenic gene therapy reduces growth of vasa-vasorum and in-stent restenosis in WHHL rabbits. J Mol Cell Cardiol 121:145–154

    Article  CAS  PubMed  Google Scholar 

  4. Kim BG, Hong SJ, Kim BK, Ahn CM, Shin DH, Kim JS, Ko YG, Choi D, Hong MK, Jang Y (2018) Association between body mass index and clinical outcomes after new-generation drug-eluting stent implantation: Korean multi-center registry data. Atherosclerosis 277:155–162

    Article  CAS  PubMed  Google Scholar 

  5. Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y (2012) In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol 59(23):2051–2057

    Article  PubMed  Google Scholar 

  6. Alfonso F, Cuesta J, Perez-Vizcayno MJ et al (2017) Bioresorbable vascular scaffolds for patients with in-stent restenosis: the RIBS VI study. JACC Cardiovasc Interv 10(18):1841–1851

    Article  PubMed  Google Scholar 

  7. Wulff H, Castle NA (2010a) Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3(3):385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu Y, Ye P, Chen SL, Zhang DM (2018) Functional regulation of large conductance Ca2+-activated K+ channels in vascular diseases. Metab Clin Exp 83:75–80

    Article  CAS  PubMed  Google Scholar 

  9. Sforna L, Megaro A, Pessia M, Franciolini F, Catacuzzeno L (2018) Structure, gating and basic functions of the Ca2+-activated K channel of intermediate conductance. Curr Neuro pharmacol 16(5):608–617

    Article  CAS  Google Scholar 

  10. Gu MX, Zhu YR, Yin XR, Zhang DM (2018) Small conductance Ca2+-activated K+ channels: insights into their roles in cardiovascular diseases. Exp Mol Med 50:23

    Article  CAS  PubMed Central  Google Scholar 

  11. Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C, James LS, Smith WR, Galacteros F, Kutlar A, Hull JH, Stocker JW, ICA-17043-10 Study Investigators (2011) Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br J Haematol 153:92–104

    Article  CAS  PubMed  Google Scholar 

  12. Ataga KI, Smith WR, De Castro LM et al (2008a) Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood 111(8):3991–3997

    Article  CAS  PubMed  Google Scholar 

  13. Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65(3):630–638

    Article  PubMed  Google Scholar 

  14. Xu R, Li C, Wu Y, Shen L, Ma J, Qian J, Ge J (2017) Role of KCa3.1 channels in macrophage polarization and its relevance in atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 37(2):226–236

    Article  CAS  PubMed  Google Scholar 

  15. Ghanshani S, Coleman M, Gustavsson P, Wu ACL, Gargus J, Gutman GA, Dahl N, Mohrenweiser H, Chandy KG (1998) Human calcium-activated potassium channel gene KCNN4 maps to chromosome 19q13.2 in the region deleted in diamond-blackfan anemia. Genomics 51(1):160–161

    Article  CAS  PubMed  Google Scholar 

  16. Grossinger EM, Kang M, Bouchareychas L et al (2018) Ca(2+)-dependent regulation of NFATc1 via KCa3.1 in inflammatory osteoclastogenesis. J Immunol 200(2):749–757

    Article  CAS  PubMed  Google Scholar 

  17. Ishi TM, Silvia C, Hirschberg B et al (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A 94(21):11651–11656

    Article  Google Scholar 

  18. Schumacher MA, Rivard AF, Bachinger HP et al (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410(6832):1120–1124

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M, Pascal JM, Zhang JF (2013) Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca(2)(+)-sensing and SK channel activation. Proc Natl Acad Sci U S A 110(12):4828–4833

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee CH, Mackinnon R (2018) Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 360(6388):508–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rauer H, Pennington M, Cahalan M, Chandy KG (1999) Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J Biol Chem 274(31):21885–21892

    Article  CAS  PubMed  Google Scholar 

  22. Rauer H, Lanigan MD, Pennington M et al (2000) Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca2+-activated over voltage-gated K+ channels. J Biol Chem 275(2):1201–1208

    Article  CAS  PubMed  Google Scholar 

  23. Wulff H, Gutman GA, Cahalan MD, Chandy KG (2001) Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1. J Biol Chem 276(34):32040–32045

    Article  CAS  PubMed  Google Scholar 

  24. Cui M, Qin G, Yu K, Bowers MS, Zhang M (2014) Targeting the small- and intermediate-conductance Ca-activated potassium channels: the drug-binding pocket at the channel/calmodulin interface. Neurosignals 22(2):65–78

    Article  CAS  PubMed  Google Scholar 

  25. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 97(14):8151–8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stocker JW, De Franceschi L, Mcnaughton-Smith GA et al (2003) ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 101(6):2412–2418

    Article  CAS  PubMed  Google Scholar 

  27. Strobaek D, Brown DT, Jenkins DP et al (2013) NS6180, a new K(Ca) 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 168(2):432–444

    Article  CAS  PubMed  Google Scholar 

  28. Mauler F, Hinz V, Horvath E, et al. Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective

  29. Urbahns K, Horvath E, Stasch JP et al (2003) 4-Phenyl-4H-pyrans as IK(Ca) channel blockers. Bioorg Med Chem Lett 13(16):2637–2639

    Article  CAS  PubMed  Google Scholar 

  30. Oliván-Viguera A, Valero MS, Murillo MD, Wulff H, García-Otín ÁL, Arbonés-Mainar JM, Köhler R (2013) Novel phenolic inhibitors of small/intermediate-conductance Ca2+-activated K+ channels, KCa3.1 and KCa2.3. PLoS One 8(3):e58614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen HM, Singh V, Pressly B, Jenkins DP, Wulff H, Yarov-Yarovoy V (2017c) Structural insights into the atomistic mechanisms of action of small molecule inhibitors targeting the KCa3.1 channel pore. Mol Pharmacol 91(4):392–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma XZ, Pang ZD, Wang JH, Song Z, Zhao LM, du XJ, Deng XL (2018) The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid. Exp Cell Res 369(2):208–217

    Article  CAS  PubMed  Google Scholar 

  33. Bi D, Toyama K, Lemaitre V et al (2013a) The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling. J Biol Chem 288(22):15843–15853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chou CC, Lunn CA, Murgolo NJ (2008) KCa3.1: target and marker for cancer, autoimmune disorder and vascular inflammation? Expert Rev Mol Diagn 8(2):179–187

    Article  CAS  PubMed  Google Scholar 

  35. Cheng Z, Shen X, Jiang X, Shan H, Cimini M, Fang P, Ji Y, Park JY, Drosatos K, Yang X, Kevil CG, Kishore R, Wang H (2018) Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: role of insufficient hydrogen sulfide. Redox Biol 16:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sandison ME, Dempster J, McCarron JG (2016) The transition of smooth muscle cells from a contractile to a migratory, phagocytic phenotype: direct demonstration of phenotypic modulation. J Physiol 594:6189–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Köhler R, Wulf H, Eichler I et al (2003) Blockade of the intermediate-conductance calcium activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108(9):1119–1125

    Article  CAS  PubMed  Google Scholar 

  38. Tharp DL, Wamhof BR, Turk JR et al (2006) Up-regulation of intermediate-conductance Ca2+-activated K+ channel (IKCa) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol 291(5):H2493–H2503

    Article  CAS  PubMed  Google Scholar 

  39. Si H, Grgic I, Heyken WT, Maier T, Hoyer J, Reusch HP, Köhler R (2006) Mitogenic modulation of Ca2+-activated K+ channels in proliferating A7r5 vascular smooth muscle cells. Br J Pharmacol 148(7):909–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jackson WF (2017) Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharmacol 78:89–144

    Article  CAS  PubMed  Google Scholar 

  41. Freise C, Querfeld U (2014) Inhibition of vascular calcification by block of intermediate conductance calcium-activated potassium channels with TRAM-34. Pharmacol Res 85:6–14

    Article  CAS  PubMed  Google Scholar 

  42. Tharp DL, Wamhof BR, Wulf H et al (2008) Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol 28(6):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallin EK (1981) Voltage clamp studies in macrophages from mouse spleen cultures. Science 214(4519):458–460

    Article  CAS  PubMed  Google Scholar 

  44. Gallin EK (1984) Calcium-and voltage-activated potassium channels in human macrophages. Biophys J 46(6):821–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Decoursey TE, Kim SY, Silver MR et al (1996) Ion channel expression in PMA-differentiated human THP-1 macrophages. J Membr Biol 152(2):141–157

    Article  CAS  PubMed  Google Scholar 

  46. Villalonga N, David M, Bielanska J, Vicente R, Comes N, Valenzuela C, Felipe A (2010) Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. J Gen Physiol 135(2):135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vicente R, Escalada A, Villalonga N, Texidó L, Roura-Ferrer M, Martín-Satué M, López-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem 281(49):37675–37685

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Wang YF, Yang XF, Wang ZH, Lian YT, Yang Y, Li XW, Gao X, Chen J, Shu YW, Cheng LX, Liao YH, Liu K (2013) Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL. J Lipid Res 54(1):34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Erdogan A, Schaefer MB, Kuhlmann CR et al (2007) Activation of Ca2+-activated potassium channels is involved in lysophosphatidylcholine-induced monocyte adhesion to endothelial cells. Atherosclerosis 190(1):100–105

    Article  CAS  PubMed  Google Scholar 

  50. Koegel H, Kaesler S, Burgstahler R, Werner S, Alzheimer C (2003) Unexpected down-regulation of the hIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation. J Biol Chem 278(5):3323–3330

    Article  CAS  PubMed  Google Scholar 

  51. Zhao LM, Wang LP, Wang HF, Ma XZ, Zhou DX, Deng XL (2015) The role of KCa3.1 channels in cardiac fibrosis induced by pressure overload in rats. Pflugers Arch 467(11):2275–2285

    Article  CAS  PubMed  Google Scholar 

  52. Kim KS, Jang JH, Lin H, Choi SW, Kim HR, Shin DH, Nam JH, Zhang YH, Kim SJ (2015) Rise and fall of Kir2.2 current by TLR4 signaling in human monocytes: PKC-dependent trafficking and PI3K-mediated PIP2 decrease. J Immunol 195(7):3345–3354

    Article  CAS  PubMed  Google Scholar 

  53. Zhang W, Lei XJ, Wang YF, Wang DQ, Yuan ZY (2016) Role of Kir2.1 in human monocyte-derived foam cell maturation. J Cell Mol Med 20(3):403–412

    Article  CAS  PubMed  Google Scholar 

  54. Kubo Y, Baldwin TJ, Jan YN et al (1993a) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362(6416):127–133

    Article  CAS  PubMed  Google Scholar 

  55. Colden-Stanfield M (2002) Clustering of very late antigen-4 integrins modulates K(+) currents to alter Ca(2+)-mediated monocyte function. Am J Physiol Cell Physiol 283(3):C990–C1000

    Article  CAS  PubMed  Google Scholar 

  56. Ling MY, Ma ZY, Wang YY, Qi J, Liu L, Li L, Zhang Y (2013) Up-regulated ATP-sensitive potassium channels play a role in increased inflammation and plaque vulnerability in macrophages. Atherosclerosis 226(2):348–355

    Article  CAS  PubMed  Google Scholar 

  57. Ypey DL, Clapham DE (1984) Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages. Proc Natl Acad Sci U S A 81(10):3083–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Penna A, Stutzin A (2015) KCa3.1-dependent hyperpolarization enhances intracellular Ca2+ signaling induced by fMLF in differentiated U937 cells. PLoS One 10(9):e0139243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang S, Ye ZM, Chen S, Luo XY, Chen SL, Mao L, Li Y, Jin H, Yu C, Xiang FX, Xie MX, Chang J, Xia YP, Hu B (2018b) MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages. J Mol Cell Cardiol 123:139–149

    Article  CAS  PubMed  Google Scholar 

  60. Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H (2008) The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118(9):3025–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Decano JL, Aikawa M (2018) Dynamic macrophages: understanding mechanisms of activation as guide to therapy for atherosclerotic vascular disease. Front Cardiovasc Med 5:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nguyen HM, Grössinger EM, Horiuchi M, Davis KW, Jin LW, Maezawa I, Wulff H (2017b) Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia. Glia 65(1):106–121

    Article  PubMed  Google Scholar 

  63. Nguyen HM, Blomster LV, Christophersen P, Wulff H (2017a) Potassium channel expression and function in microglia: plasticity and possible species variations. Channels (Austin) 11(4):305–315

    Article  Google Scholar 

  64. Panda S, Srivastava S, Li Z, Vaeth M, Fuhs SR, Hunter T, Skolnik EY (2016) Identification of PGAM5 as a mammalian protein histidine phosphatase that plays a central role to negatively regulate CD4(+) T cells. Mol Cell 63(3):457–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Crabtre GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(3):S67–S79

    Article  Google Scholar 

  66. Lam J, Wulff H (2011) The lymphocyte potassium channels Kv1.3 and KCa3.1 as targets for immunosuppression. Drug Dev Res 72(7):573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 275(47):37137–37149

    Article  CAS  PubMed  Google Scholar 

  68. Fanger CM, Rauer H, Neben AL, Miller MJ, Rauer H, Wulff H, Rosa JC, Ganellin CR, Chandy KG, Cahalan MD (2001) Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem 276(15):12249–12256

    Article  CAS  PubMed  Google Scholar 

  69. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 111(11):1703–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wulff H, Knaus HG, Pennington M, Chandy KG (2004) K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol 173(2):776–786

    Article  CAS  PubMed  Google Scholar 

  71. Tarasov MV, Bystrova MF, Kotova PD, Rogachevskaja OA, Sysoeva VY, Kolesnikov SS (2017) Calcium-gated K(+) channels of the KCa1.1-and KCa3.1-type couple intracellular Ca(2+) signals to membrane hyper-polarization in mesenchymal stromal cells from the human adipose tissue. Pflugers Arch 469(2):349–362

    Article  CAS  PubMed  Google Scholar 

  72. Di L, Srivastava S, Zhdanova O (2010) et al. Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci U S A 107(4):1541–1546

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ahmed D, Jaworski a RD et al (2018) Transcriptional profiling suggests extensive metabolic rewiring of human and mouse macrophages during early interferon alpha responses. Mediat Inflamm 5906819:2018

    Google Scholar 

  74. Whitman SC, Ravisankar P, Elam H, Daugherty A (2000) Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/−mice. Am J Pathol 157(6):1819–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Upadhya S, Mooteri S, Peckham N, Pai RG (2004) Atherogenic effect of interleukin-2 and anti-atherogenic effect of interleukin-2 antibody in apo-E-deficient mice. Angiology 55(3):289–294

    Article  PubMed  Google Scholar 

  76. Proto JD, Doran AC, Subramanian M, Wang H, Zhang M, Sozen E, Rymond CC, Kuriakose G, D’Agati V, Winchester R, Sykes M, Yang YG, Tabas I (2018) Hypercholesterolemia induces T cell expansion in humanized immune mice. J Clin Invest 128(6):2370–2375

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ammirati E, Cianflone D, Vecchio V, Banfi M, Vermi AC, de Metrio M, Grigore L, Pellegatta F, Pirillo A, Garlaschelli K, Manfredi AA, Catapano AL, Maseri A, Palini AG, Norata GD (2012) Effector memory T cells are associated with atherosclerosis in humans and animal models. J Am Heart Assoc 1(1):27–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ammirati E, Moroni F, Magnoni M, Camici PG (2015) The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol 179(2):173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hu D, Mohanta SK, Yin C, Peng L, Ma Z, Srikakulapu P, Grassia G, MacRitchie N, Dever G, Gordon P, Burton FL, Ialenti A, Sabir SR, McInnes IB, Brewer JM, Garside P, Weber C, Lehmann T, Teupser D, Habenicht L, Beer M, Grabner R, Maffia P, Weih F, Habenicht AJR (2015) Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42(6):1100–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mohanta SK, Yin C, Peng L, Srikakulapu P, Bontha V, Hu D, Weih F, Weber C, Gerdes N, Habenicht AJR (2014) Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis. Circ Res 114(11):1772–1787

    Article  CAS  PubMed  Google Scholar 

  81. Ye X, Beckett T, Bagher P, Garland CJ, Dora KA (2018) VEGF-A inhibits agonist-mediated Ca(2+) responses and activation of IKCa channels in mouse resistance artery endothelial cells. J Physiol 596(16):3553–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yun J, Park H, Ko JH, Lee W, Kim K, Kim T, Shin J, Kim K, Kim K, Song JH, Noh YH, Bang H, Lim I (2010) Expression of Ca2+-activated K+ channels in human dermal fibroblasts and their roles in apoptosis. Skin Pharmacol Physiol 23(2):91–104

    Article  CAS  PubMed  Google Scholar 

  83. Mahaut-Smith MP, Rink TJ, Collins SC, Sage SO (1990) Voltage-gated potassium channels and the control of membrane potential in human platelets. J Physiol 428:723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yap FC, Weber DS, Taylor MS, Townsley MI, Comer BS, Maylie J, Adelman JP, Lin MT (2016) Endothelial SK3 channel-associated Ca2+ microdomains modulate blood pressure. Am J Physiol Heart Circ Physiol 310(9):H1151–H1163

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yang H, Li X, Liu Y, Li X, Li X, Wu M, Lv X, Chunhua C, Ding X, Zhang Y (2018a) Crocin improves the endothelial function regulated by Kca3.1 through ERK and Akt signaling pathways. Cell Physiol Biochem 46(2):765–780

    Article  CAS  PubMed  Google Scholar 

  86. Nakazawa G, Otsuka F, Nakano M, Vorpahl M, Yazdani SK, Ladich E, Kolodgie FD, Finn AV, Virmani R (2011) The pathology of neoatherosclerosis in human coronary implants bare-metal and drug eluting stents. J Am Coll Cardiol 57(11):1314–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joner M, Koppara T, Byrne RA, Castellanos MI, Lewerich J, Novotny J, Guagliumi G, Xhepa E, Adriaenssens T, Godschalk TC, Malik N, Alfonso F, Tada T, Neumann FJ, Desmet W, ten Berg J, Gershlick AH, Feldman LJ, Massberg S, Kastrati A, Prevention of PRESTIGE Investigators (2018) Neoatherosclerosis in patients with coronary stent thrombosis: findings from optical coherence tomography imaging (a report of the PRESTIGE consortium). JACC Cardiovasc Interv 11(14):1340–1350

    Article  PubMed  Google Scholar 

  88. Otsuka F, Vorpahl M, Nakano M, Foerst J, Newell JB, Sakakura K, Kutys R, Ladich E, Finn AV, Kolodgie FD, Virmani R (2014) Pathology of second-generation everolimus-eluting stents versus first-generation sirolimus-and Paclitaxel-eluting stents in humans. Circulation 129(2):211–223

    Article  CAS  PubMed  Google Scholar 

  89. Paoletti G, Gomez-Lara J, Brugaletta S, Ñato M, Romaguera R, Roura G, Ferreiro JL, Teruel L, Gracida M, Ortega-Paz L, Gomez-Hospital JA, Sabaté M, Cequier À (2018) Association between coronary atherosclerosis progression and in-stent neoatherosclerosis in patients with ST-elevation myocardial infarction at five-year follow-up. Euro Intervention 14(2):206–214

    PubMed  Google Scholar 

  90. Pietersma A, Kofflard M, de Wit LE et al (1995) Late lumen loss after coronary angioplasty is associated with the activation status of circulating phagocytes before treatment. Circulation 91(5):1320–1325

    Article  CAS  PubMed  Google Scholar 

  91. Schwartz RS, Holmes DR Jr, Topol EJ (1992) The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J Am Coll Cardiol 20(5):1284–1293

    Article  CAS  PubMed  Google Scholar 

  92. Touchard AG, Schwartz RS (2006) Preclinical restenosis models: challenges and successes. Toxicol Pathol 34(1):11–18

    Article  PubMed  Google Scholar 

  93. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202

    Article  PubMed  Google Scholar 

  94. Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med Overseas Ed 340(2):115–126

    Article  CAS  Google Scholar 

  95. Yin RX, Yang DZ, Wu JZ (2014) Nanoparticle drug-and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics 4(2):175–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Toutouzas K, Colombo A, Stefanadis C (2004) Inflammation and restenosis after percu-taneous coronary interventions. Eur Heart J 25(19):1679–1687

    Article  CAS  PubMed  Google Scholar 

  97. Kang SJ, Mintz GS, Akasaka T, Park DW, Lee JY, Kim WJ, Lee SW, Kim YH, Whan Lee C, Park SW, Park SJ (2011) Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug eluting stent implantation. Circulation 123:2954–2963

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81370304); Natural Science Foundation of Jiangsu Province (BK20151085); Jiangsu Provincial Key Research and Development Program (BE2018611); the 10th Summit of Six Top Talents of Jiangsu Province (2016-WSN-185); and Medical Science and technology development Foundation of Nanjing Department of Health (YKK15101, ZKX16048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Min Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YR., Jiang, XX. & Zhang, DM. Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. J Mol Med 97, 1219–1229 (2019). https://doi.org/10.1007/s00109-019-01814-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01814-9

Keywords

Navigation