Skip to main content
Log in

Pathological cardiac hypertrophy: the synergy of adenylyl cyclases inhibition in cardiac and immune cells during chronic catecholamine stress

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Response to stressors in our environment and daily lives is an adaptation conserved through evolution as it is beneficial in enhancing the survival and continuity of humans. Although stressors have evolved, the drastic physiological response they elicit still remains unchanged. The chronic secretion and circulation of catecholamines to produce physical responses when they are not required may result in pathological consequences which affect cardiac function drastically. This review seeks to point out the probable implication of chronic stress in inducing an inflammation disorder in the heart. We discussed the likely synergy of a G protein-independent stimuli signaling via β2-adrenergic receptors in both cardiomyocytes and immune cells during chronic catecholamine stress. To explain this synergy, we hypothesized the possibility of adenylyl cyclases having a regulatory effect on G protein-coupled receptor kinases. This was based on the negative correlations they exhibit during normal cardiac function and heart failures. As such, the downregulation of adenylyl cyclases in cardiomyocytes and immune cells during chronic catecholamine stress enhances the expressions of G protein-coupled receptor kinases. In addition, we explain the maladaptive roles played by G protein-coupled receptor kinase and extracellular signal-regulated kinase in the synergistic cascade that pathologically remodels the heart. Finally, we highlighted the therapeutic potentials of an adenylyl cyclases stimulator to attenuate pathological cardiac hypertrophy (PCH) and improve cardiac function in patients developing cardiac disorders due to chronic catecholamine stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mobbs D, Hagan CC, Dalgleish T, Silston B, Prévost C (2015) The ecology of human fear: survival optimization and the nervous system. Front Neurosci 9:55

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vanitallie TB (2002) Stress: a risk factor for serious illness. Metabolism 51:40–45

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein DS, Kopin IJ (2007) Evolution of concepts of stress. Stress 10:109–120

    Article  PubMed  Google Scholar 

  4. Weber K, Rockstroh B, Borgelt J, Awiszus B, Popov T, Hoffmann K, Schonauer K, Watzl H, Pröpster K (2008) Stress load during childhood affects psychopathology in psychiatric patients. BMC Psychiatry 8:63

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen H, Liu D, Guo L, Cheng X, Guo N, Shi M (2018) Chronic psychological stress promotes lung metastatic colonization of circulating breast cancer cells by decorating a pre-metastatic niche through activating β-adrenergic signalling. J Pathol 244:49–60

    Article  CAS  PubMed  Google Scholar 

  6. Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O'Gara P, Stuckey DJ, Nikolaev VO, Diakonov I, Pannell L, Gong H, Sun H, Peters NS, Petrou M, Zheng Z, Gorelik J, Lyon AR, Harding SE (2012) High levels of circulating epinephrine trigger apical cardiodepression in a b2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 126:697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stojanovich L (2010) Stress and autoimmunity. Autoimmun Rev 9:A271–A276

    Article  CAS  PubMed  Google Scholar 

  8. Dhabhar FS (2009) Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation 16:300–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lampri E, Ioachim E (2013) Angiogenesis: something old, something new. In: Santulli G (ed) Angiogenesis: insights from a systematic overview. Nova Science, New York, pp 1–30

    Google Scholar 

  10. O’Connell TD, Jensen BC, Baker AJ, Simpson PC (2014) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66:308–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vicco MH, Pujato N, Bontempi I, Rodeles L, Marcipar I, Bottasso OA (2014) β1-selective adrenoceptor antagonists increase plasma levels of anti-p2β antibodies and decrease cardiac involvement in chronic progressive Chagas heart disease. Can J Cardiol 30:332–337

    Article  PubMed  Google Scholar 

  12. Santulli G, Iaccarino G (2013) Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes. Immun Ageing 10:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Belge C, Hammond J, Dubois-Deruy E, Manoury B, Hamelet J, Beauloye C, Markl A, Pouleur AC, Bertrand L, Esfahani H, Jnaoui K, Götz KR, Nikolaev VO, Vanderper A, Herijgers P, Lobysheva I, Iaccarino G, Hilfiker-Kleiner D, Tavernier G, Langin D, Dessy C, Balligand JL (2014) Enhanced expression of beta3 adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation 129:451–462

    Article  CAS  PubMed  Google Scholar 

  14. Kavelaars A (2002) Regulated expression of alpha-1 adrenergic receptors in the immune system. Brain Behav Immun 16:799–807

    Article  CAS  PubMed  Google Scholar 

  15. Kohm AP, Sanders VM (2001) Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 53:487–525

    CAS  PubMed  Google Scholar 

  16. Fragala MS, Kraemer WJ, Mastro AM, Denegar CR, Volek JS, Häkkinen K, Anderson JM, Lee E, Maresh CM (2011) Leukocyte b2-adrenergic receptor expression in response to resistance. Med Sci Sports Exerc 43:1422–1432

    Article  CAS  PubMed  Google Scholar 

  17. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753

    Article  CAS  PubMed  Google Scholar 

  18. Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q (2006) Subtype-specific alpha1- and beta-adrenoceptor signaling in the heart. Trends Pharmacol Sci 27:330–337

    Article  CAS  PubMed  Google Scholar 

  19. Myagmar BE, Flynn JM, Cowley PM, Swigart PM, Montgomery MD, Thai K, Nair D, Gupta R, Deng DX, Hosoda C, Melov S, Baker AJ, Simpson PC (2017) Adrenergic receptors in individual ventricular myocytes: the beta-1 and alpha-1B are in all cells, the alpha-1A is in a subpopulation, and the beta-2 and beta-3 are mostly absent. Circ Res 120:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heubach JF, Trebeß I, Wettwer E, Himmel HM, Michel MC, Kaumann AJ, Koch WJ, Harding SE, Ravens U (1999) L-type calcium current and contractility in ventricular myocytes from mice overexpressing the cardiac β2-adrenoceptor. Cardiovasc Res 42:173–182

    Article  CAS  PubMed  Google Scholar 

  21. Patterson AJ, Zhu W, Chow A, Agrawal R, Kosek J, Xiao RP, Kobilka B (2004) Protecting the myocardium: a role for the β2 adrenergic receptor in the heart. Crit Care Med 32:1041–1048

    Article  PubMed  Google Scholar 

  22. Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG, Cheng H (2004) Subtype-specific β-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci 25:358–365

    Article  CAS  PubMed  Google Scholar 

  23. Montó F, Oliver E, Vicente D, Rueda J, Agüero J, Almenar L, Ivorra MD, Barettino D, D'Ocon P (2012) Different expression of adrenoceptors and GRKs in the human myocardium depends on heart failure etiology and correlates to clinical variables. Am J Physiol Heart Circ Physiol 303:H368–H376

    Article  CAS  PubMed  Google Scholar 

  24. Hou H, Zhao Z, Machuki JO, Zhang L, Zhang Y, Fu L, Wu J, Liu Y, Harding SE, Sun H (2018) Estrogen deficiency compromised the β2AR-Gs/Gi coupling: implications for arrhythmia and cardiac injury. Pflugers Arch 470:559–570

    Article  CAS  PubMed  Google Scholar 

  25. Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE (2008) Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med 5:22–29

    Article  CAS  PubMed  Google Scholar 

  26. Wu JL, Liu WZ, Liu JH, Qiao LY, Yuan YN (2011) Distribution and quantification of β-3 adrenergic receptor in tissues of sheep. Animal 5:88–93

    Article  CAS  PubMed  Google Scholar 

  27. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  28. Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol 6:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71

    Article  CAS  PubMed  Google Scholar 

  30. Heubach JF, Ravens U, Kaumann AJ (2004) Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human beta2-adrenoceptors overexpressed in mouse heart. Mol Pharmacol 65:1313–1322

    Article  CAS  PubMed  Google Scholar 

  31. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedeberg's Arch Pharmacol 369:151–159

    Article  CAS  Google Scholar 

  32. Liu R, Ramani B, Soto D, De Arcangelis V, Xiang Y (2009) Agonist dose-dependent phosphorylation by protein kinase a and g protein-coupled receptor kinase regulates beta2 adrenoceptor coupling to g(i) proteins in cardiomyocytes. J Biol Chem 284:32279–32287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soto D, De Arcangelis V, Zhang J, Xiang Y (2009) Dynamic protein kinase a activities induced by beta-adrenoceptors dictate signaling propagation for substrate phosphorylation and myocyte contraction. Circ Res 104:770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lezoualc’h F, Fazal L, Laudette M, Conte C (2016) Cyclic AMP sensor EPAC proteins and their role in cardiovascular function and disease. Circ Res 118:881–897

    Article  CAS  PubMed  Google Scholar 

  35. Metrich M, Lucas A, Gastineau M, Samuel JL, Heymes C, Morel E, Lezoualc’h F (2008) Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 102:959–965

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz-Hurtado G, Domínguez-Rodríguez A, Pereira L, Fernández-Velasco M, Cassan C, Lezoualc’h F, Benitah JP, Gómez AM (2012) Sustained Epac activation induces calmodulin dependent positive inotropic effect in adult cardiomyocytes. J Mol Cell Cardiol 53:617–625

    Article  CAS  PubMed  Google Scholar 

  37. Shu J, Zhang F, Zhang L, Wei W (2017) G protein coupled receptors signalling pathways implicated in inflammatory and immunes response of rheumatoid arthritis. Inflamm Res 66:379–387

    Article  CAS  PubMed  Google Scholar 

  38. Grandoch M, Roscioni SS, Schmidt M (2009) The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br J Pharmacol 159:265–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garay J, D'Angelo JA, Park Y, Summa CM, Aiken ML, Morales E, Badizadegan K, Fiebiger E, Dickinson BL (2010) Crosstalk between PKA and Epac regulates the phenotypic maturation and function of human dendritic cells. J Immunol 185:3227–3338

    Article  CAS  PubMed  Google Scholar 

  40. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    Article  CAS  PubMed  Google Scholar 

  41. Gros R, Tan CM, Chorazyczewski J, Kelvin DJ, Benovic JL, Feldman RD (1999) G-protein-coupled receptor kinase expression in hypertension. Clin Pharmacol Ther 65:545–551

    Article  CAS  PubMed  Google Scholar 

  42. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  CAS  PubMed  Google Scholar 

  43. Noor N, Patel CB, Rockman HA (2011) β-Arrestin: a signalling molecule and potential therapeutic target for heart failure. J Mol Cell Cardiol 51:534–541

    Article  CAS  PubMed  Google Scholar 

  44. Cheng Y, Tao YM, Sun JF, Wang YH, Xu XJ, Chen J, Chi ZQ, Liu JG (2010) Adenosine A(1) receptor agonist N(6)-cyclohexyl-adenosine induced phosphorylation of delta opioid receptor and desensitization of its signalling. Acta Pharmacol Sin 31:784–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moulédous L, Froment C, Dauvillier S, Burlet-Schiltz O, Zajac J-M, Mollereau C (2012) GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors. J Biol Chem 287:12736–12749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mika D, Richter W, Conti M (2015) A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc Natl Acad Sci U S A 112:2023–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roth NS, Campbell PT, Caron MG, Lefkowitz RJ, Lohse MJ (1991) Comparative rates of desensitization of β-adrenergic receptors by the β-adrenergic receptor kinase and the cyclic AMP dependent protein kinase. Proc Natl Acad Sci U S A 88:6201–6204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi Q, Li M, Mika D, Fu Q, Kim S, Phan J, Shen A, Vandecasteele G, Xiang YK (2017) Heterologous desensitization of cardiac β-adrenergic signal via hormone-induced βAR/arrestin/PDE4 complexes. Cardiovasc Res 113:656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lorton D, Bellinger DL, Schaller JA, Shewmaker E, Osredkar T, Lubahn C (2013) Altered sympathetic-to-immune cell signaling via β2-adrenergic receptors in adjuvant arthritis. Clin Dev Immunol 2013:764395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eschenhagen T (2008) Beta-adrenergic signalling in heart failure-adapt or die. Nat Med 14:485–487

    Article  CAS  PubMed  Google Scholar 

  51. Kang DS, Tian X, Benovic JL (2013) Role of β-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Curr Opin Cell Biol 27:63–71

    Article  CAS  PubMed  Google Scholar 

  52. Mak JC, Hisada T, Salmon M, Barnes PJ, Chung KF (2002) Glucocorticoids reverse IL-1 beta-induced impairment of beta-adrenoceptor-mediated relaxation and up-regulation of G-protein-coupled receptor kinases. Br J Pharmacol 135:987–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liebler JM, Borok Z, Li X, Zhou B, Sandoval AJ, Kim KJ, Crandall ED (2004) Alveolar epithelial type I cells express beta 2-adrenergic receptors and G-protein receptor kinase 2. J Histochem Cytochem 52:759–767

    Article  CAS  PubMed  Google Scholar 

  54. Lohse MJ, Engelhardt S, Danner S, Böhm M (1996) Mechanisms of beta-adrenergic receptor desensitization: from molecular biology to heart failure. Basic Res Cardiol 2:29–34

    Article  Google Scholar 

  55. Kim YK, Kim SJ, Yatani A, Huang Y, Castelli G, Vatner DE, Liu J, Zhang Q, Diaz G, Zieba R, Thaisz J, Drusco A, Croce C, Sadoshima J, Condorelli G, Vatner SF (2003) Mechanism of enhanced cardiac function in mice with hypertrophy induced by overexpressed Akt. J Biol Chem 278:47622–47628

    Article  CAS  PubMed  Google Scholar 

  56. Ooi JY, Bernardo BC, McMullen JR (2014) The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Med Chem 6:205–222

    Article  CAS  PubMed  Google Scholar 

  57. Perrino C, Naga Prasad SV, Mao L, Noma T, Yan Z, Kim HS, Smithies O, Rockman HA (2006) Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest 116:1547–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rau T, Nose M, Remmers U, Weil J, Weissmüller A, Davia K, Harding S, Peppel K, Koch WJ, Eschenhagen T (2003) Overexpression of wild-type Galpha (i)-2 suppresses beta-adrenergic signaling in cardiac myocytes. FASEB J 17:523–525

    Article  CAS  PubMed  Google Scholar 

  59. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  CAS  PubMed  Google Scholar 

  60. van Berlo JH, Maillet M, Molkentin JD (2013) Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 123:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ho CY, López B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, González A, Colan SD, Seidman JG, Díez J, Seidman CE (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363:552–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Larochelle P, Tobe SW, Lacourcière Y (2014) β-Blockers in hypertension: studies and meta-analyses over the years. Can J Cardiol 30:S16–S22

    Article  PubMed  Google Scholar 

  63. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, Lubsen J, Lutiger B, Metra M, Remme WJ, Torp-Pedersen C, Scherhag A, Skene A, Carvedilol Or Metoprolol European Trial Investigators (2003) Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 62:7–13

    Article  CAS  Google Scholar 

  64. Wiysonge CS, Bradley HA, Volmink J, Mayosi BM, Mbewu A, Opie LH (2017) Beta-blockers for hypertension. Cochrane Database Syst Rev 11:CD002003

    Google Scholar 

  65. Tan KS, Nackley AG, Satterfield K, Maixner W, Diatchenko L, Flood PM (2007) β2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-κB-independent mechanisms. Cell Signal 19:251–260

    Article  CAS  PubMed  Google Scholar 

  66. Sanders VM (2012) The beta2-adrenergic receptor on T and B lymphocytes: do we understand it yet? Brain Behav Immun 26:195–200

    Article  CAS  PubMed  Google Scholar 

  67. Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackerman KD, Madden KS, Olschowki JA, Livnat S (1987) Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol Rev 100:225–260

    Article  CAS  PubMed  Google Scholar 

  68. Goyarts E, Matsui M, Mammone T, Bender AM, Wagner JA, Maes D, Granstein RD (2008) Norepinephrine modulates human dendritic cell activation by altering cytokine release. Exp Dermatol 17:188–196

    Article  CAS  PubMed  Google Scholar 

  69. Farmer P, Pugin J (2000) β-Adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IκB/NF-κB pathway. Am J Phys Lung Cell Mol Phys 279:L675–L682

    CAS  Google Scholar 

  70. Baillie GS, Houslay MD (2005) Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes. Curr Opin Cell Biol 17:129–134

    Article  CAS  PubMed  Google Scholar 

  71. Ghosh S, Hayden MS (2008) New regulators of NF-κB in inflammation. Nat Rev Immunol 8:837–848

    Article  CAS  PubMed  Google Scholar 

  72. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN, Fleshner M (2005) Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience 135:1295–1307

    Article  CAS  PubMed  Google Scholar 

  73. Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Meloni EG, Myers KM, Carlezon WA Jr, Kvetnansky R (2012) Epinephrine: a short- and long-term regulator of stress and development of illness: a potential new role for epinephrine in stress. Cell Mol Neurobiol 32:737–748

    Article  CAS  PubMed  Google Scholar 

  74. Kim M-H, Gorouhi F, Ramirez S, Granick JL, Byrne BA, Soulika AM, Simon SI, Rivkah Isseroff R (2014) Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2 adrenergic receptor mediated upregulation of IL-6. J Invest Dermatol 134:809–817

    Article  CAS  PubMed  Google Scholar 

  75. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  CAS  PubMed  Google Scholar 

  76. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278:15922–15926

    Article  CAS  PubMed  Google Scholar 

  77. Sadana R, Dessauer CW (2009) Physiological roles for G-protein regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17:5–22

    Article  CAS  PubMed  Google Scholar 

  78. Beazely MA, Watts VJ (2006) Regulatory properties of adenylate cyclases type 5 and 6: a progress report. Eur J Pharmacol 535:1–12

    Article  CAS  PubMed  Google Scholar 

  79. Li Y, Chen L, Kass RS, Dessauer CW (2012) The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J Biol Chem 287:29815–29824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scarpace PJ, Matheny M, Tumer N (1996) Myocardial adenylyl cyclase type V and VI mRNA: differential regulation with age. J Cardiovasc Pharmacol 27:86–90

    Article  CAS  PubMed  Google Scholar 

  81. Hu CL, Chandra R, Ge H, Pain J, Yan L, Babu G, Depre C, Iwatsubo K, Ishikawa Y, Sadoshima J, Vatner SF, Vatner DE (2009) Adenylyl cyclase type 5 protein expression during cardiac development and stress. Am J Physiol Heart Circ Physiol 297:H1776–H1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Timofeyev V, Myers RE, Kim HJ, Woltz RL, Sirish P, Heiserman JP, Li N, Singapuri A, Tang T, Yarov-Yarovoy V, Yamoah EN, Hammond HK, Chiamvimonvat N (2013) Adenylyl cyclase subtype-specific compartmentalization: differential regulation of l-type Ca2+ current in ventricular myocytes. Circ Res 112:1567–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Okumura S, Takagi G, Kawabe J, Yang G, Lee MC, Hong C, Liu J, Vatner DE, Sadoshima J, Vatner SF, Ishikawa Y (2003) Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci U S A 100:9986–9990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu YS, Chen CC, Chien CL, Lai HL, Jiang ST, Chen YC, Lai LP, Hsiao WF, Chen WP, Chern Y (2017) The type VI adenylyl cyclase protects cardiomyocytes from β-adrenergic stress by a PKA/STAT3-dependent pathway. J Biomed Sci 24:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vatner SF, Park M, Yan L, Lee GJ, Lai L, Iwatsubo K, Ishikawa Y, Pessin J, Vatner DE (2013) Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. Am J Physiol Heart Circ Physiol 305:H1–H8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tang T, Lai NC, Wright AT, Gao MH, Lee P, Guo T, Tang R, McCulloch AD, Hammond HK (2013) Adenylyl cyclase 6 deletion increases mortality during sustained β-adrenergic receptor stimulation. J Mol Cell Cardiol 60:60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang T, Gao MH, Lai NC, Firth AL, Takahashi T, Guo T, Yuan JX, Roth DM, Hammond HK (2008) Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling. Circulation 117:61–69

    Article  CAS  PubMed  Google Scholar 

  88. Esposito G, Perrino C, Ozaki T, Takaoka H, Defer N, Petretta MP, De Angelis MC, Mao L, Hanoune J, Rockman HA, Chiariello M (2008) Increased myocardial contractility and enhanced exercise function in transgenic mice overexpressing either adenylyl cyclase 5 or 8. Basic Res Cardiol 103:22–30

    Article  PubMed  Google Scholar 

  89. Park M, Park J, Lee J, Tian B, Lai L, Iwatsubo K, Ishikawa Y, Sadoshima J, Vatner DE, Vatner SF (2011) Cardiac overexpression of adenylyl cyclase type 5 induces left ventricular hypertrophy potentially by activating calcineurin-NFAT signalling. FASEB J 25:1

    Article  CAS  Google Scholar 

  90. Guellich A, Gao S, Hong C, Yan L, Wagner TE, Dhar SK, Ghaleh B, Hittinger L, Iwatsubo K, Ishikawa Y, Vatner SF, Vatner DE (2010) Effects of cardiac overexpression of type 6 adenylyl cyclase affects on the response to chronic pressure overload. Am J Physiol Heart Circ Physiol 299:H707–H712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lai NC, Tang T, Gao MH, Saito M, Takahashi T, Roth DM, Hammond HK (2008) Activation of cardiac adenylyl cyclase expression increases function of the failing ischemic heart in mice. J Am Coll Cardiol 51:1490–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Taskén K, Stokka AJ (2006) The molecular machinery for cAMP-dependent immunomodulation in T-cells. Biochem Soc Trans 34:476–479

    Article  PubMed  Google Scholar 

  93. Raker VK, Becker C, Steinbrink K (2016) The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front Immunol 7:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Essayan DM (2001) Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 108:671–680

    Article  CAS  PubMed  Google Scholar 

  95. Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R (2006) A global analysis of cross-talk in a mammalian cellular signalling network. Nat Cell Biol 8:571–580

    Article  CAS  PubMed  Google Scholar 

  96. Kohm AP, Mozaffarian A, Sanders VM (2002) B cell receptor- and beta 2-adrenergic receptor-induced regulation of B7-2 (CD86) expression in B cells. J Immunol 168:6314–6322

    Article  CAS  PubMed  Google Scholar 

  97. Hedrich CM, Crispin JC, Rauen T, Ioannidis C, Apostolidis SA, Lo MS, Kyttaris VC, Tsokos GC (2012) cAMP response element modulator α controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci U S A 109:16606–16611

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liopeta K, Boubali S, Virgilio L, Thyphronitis G, Mavrothalassitis G, Dimitracopoulos G, Paliogianni F (2009) cAMP regulates IL-10 production by normal human T lymphocytes at multiple levels: a potential role for MEF2. Mol Immunol 46:345–354

    Article  CAS  PubMed  Google Scholar 

  99. Cekic C, Sag D, Day Y-J, Linden J (2013) Extracellular adenosine regulates naive T cell development and peripheral maintenance. J Exp Med 210:2693–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Duan B, Davis R, Sadat EL, Collins J, Sternweis PC, Yuan D, Jiang LI (2010) Distinct roles of adenylyl cyclase VII in regulating the immune responses in mice. J Immunol 185:335–344

    Article  CAS  PubMed  Google Scholar 

  101. Guo M, Pascual RM, Wang S, Fontana MF, Valancius CA, Panettieri RA Jr, Tilley SL, Penn RB (2005) Cytokines regulate beta-2-adrenergic receptor responsiveness in airway smooth muscle via multiple PKA-and EP2 receptor-dependent mechanisms. Biochemistry 44:13771–13782

    Article  CAS  PubMed  Google Scholar 

  102. Keravis T, Lugnier C (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165:1288–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vinge LE, Oie E, Andersson Y, Grogaard HK, Andersen G, Attramadal H (2001) Myocardial distribution and regulation of GRK and beta-arrestin isoforms in congestive heart failure in rats. Am J Physiol Heart Circ Physiol 281:H2490–H2499

    Article  CAS  PubMed  Google Scholar 

  104. Santulli G, Campanile A, Spinelli L, Assante di Panzillo E, Ciccarelli M, Trimarco B, Iaccarino G (2011) G protein-coupled receptor kinase 2 in patients with acute myocardial infarction. Am J Cardiol 107:1125–1130

    Article  CAS  PubMed  Google Scholar 

  105. Hata JA, Williams ML, Schroder JN, Lima B, Keys JR, Blaxall BC, Petrofski JA, Jakoi A, Milano CA, Koch WJ (2006) Lymphocyte levels of GRK2 (βARK1) mirror changes in the LVAD-supported failing human heart: lower GRK2 associated with improved β-adrenergic signalling after mechanical unloading. J Card Fail 12:360–368

    Article  CAS  PubMed  Google Scholar 

  106. Iaccarino G, Barbato E, Cipolletta E, De Amicis V, Margulies KB, Leosco D, Trimarco B, Koch WJ (2005) Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur Heart J 26:1752–1758

    Article  CAS  PubMed  Google Scholar 

  107. Gravning J, Ahmed MS, Qvigstad E, Krobert K, Edvardsen T, Moe IT, Hagelin EM, Sagave J, Valen G, Levy FO, Osnes JB, Skomedal T, Attramadal H (2013) Connective tissue growth factor/CCN2 attenuates-adrenergic receptor responsiveness and cardiotoxicity by induction of G protein-coupled receptor kinase-5 in cardiomyocytes. Mol Pharmacol 84:372–383

    Article  CAS  PubMed  Google Scholar 

  108. Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, Reiter E, Premont RT, Lichtarge O, Lefkowitz RJ (2005) β-Arrestin-dependent, G protein-independent ERK1/2 activation by the β2 adrenergic receptor. J Biol Chem 281:1261–1273

    Article  CAS  PubMed  Google Scholar 

  109. Hullmann JE, Grisanti LA, Makarewich CA, Gao E, Gold JI, Chuprun JK, Tilley DG, Houser SR, Koch WJ (2014) GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ Res 115:976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Islam KN, Koch WJ (2012) Involvement of nuclear factor κB (NF-κB) signaling pathway in regulation of cardiac G protein-coupled receptor kinase 5 (GRK5) expression. J Biol Chem 287:12771–12778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gold JI, Gao E, Shang X, Premont RT, Koch WJ (2012) Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication. Circ Res 111:1048–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Watari K, Nakaya M, Kurose H (2014) Multiple functions of G protein-coupled receptor kinases. J Mol Signal 9:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gurevich VV, Gurevich EV (2019) GPCR signaling regulation: the role of GRKs and Arrestins. Front Pharmacol 10:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bouvier M, Collins S, O'Dowd BF, Campbell PT, de Blasi A, Kobilka BK, MacGregor C, Irons GP, Caron MG, Lefkowitz RJ (1989) Two distinct pathways for cAMP-mediated down regulation of the β 2-adrenergic receptor: phosphorylation of the receptor and regulation of its mRNA level. J Biol Chem 264:16786–16792

    CAS  PubMed  Google Scholar 

  115. Martini JS, Raake P, Vinge LE, DeGeorge BR Jr, Chuprun JK, Harris DM, Gao E, Eckhart AD, Pitcher JA, Koch WJ (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci U S A 105:12457–12462

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, Gold JI, Gumpert A, Chen M, Otis NJ, Dorn GW 2nd, Trimarco B, Iaccarino G, Koch WJ (2011) G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 123:1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Woodall MC, Ciccarelli M, Woodall BP, Koch WJ (2014) G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 114:1661–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rengo G, Leosco D, Zincarelli C, Marchese M, Corbi G, Liccardo D, Filippelli A, Ferrara N, Lisanti MP, Koch WJ, Lymperopoulos A (2010) Adrenal GRK2 lowering is an underlying mechanism for the beneficial sympathetic effects of exercise training in heart failure. Am J Physiol Heart Circ Physiol 298:H2032–H2038

    Article  CAS  PubMed  Google Scholar 

  119. Rengo G, Galasso G, Femminella GD, Parisi V, Zincarelli C, Pagano G, De Lucia C, Cannavo A, Liccardo D, Marciano C, Vigorito C, Giallauria F, Ferrara N, Furgi G, Filardi PP, Koch WJ, Leosco D (2014) Reduction of lymphocyte G protein-coupled receptor kinase-2 (GRK2) after exercise training predicts survival in patients with heart failure. Eur J Prev Cardiol 21:4–11

    Article  PubMed  Google Scholar 

  120. Anand-Srivastava MB, Picard S, Thibault C (1991) Altered expression of inhibitory guanine nucleotide regulatory proteins (Gi alpha) in spontaneously hypertensive rats. Am J Hypertens 4:840–843

    Article  CAS  PubMed  Google Scholar 

  121. Ishikawa Y, Sorota S, Kiuchi K, Shannon RP, Komamura K, Katsushika S, Vatner DE, Vatner SF, Homcy CJ (1994) Downregulation of adenylyl cyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest 93:2224–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. El-Armouche A, Zolk O, Rau T, Eschenhagen T (2003) Inhibitory G-proteins and their role in desensitization of the adenylyl cyclase pathway in heart failure. Cardiovasc Res 60:478–487

    Article  CAS  PubMed  Google Scholar 

  123. Anand-Srivastava MB (2010) Modulation of Gi proteins in hypertension: role of angiotensin II and oxidative stress. Curr Cardiol Rev 6:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rajagopal K, Lefkowitz RJ, Rockman HA (2005) When 7 transmembrane receptors are not G protein coupled receptors. J Clin Invest 115:2971–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, Lefkowitz RJ (2005) Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 102:1442–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L, Saba-El-Leil MK, Meloche S, Pouysségur J, Pagès G, De Windt LJ, Doevendans PA, Molkentin JD (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109:1938–1941

    Article  CAS  PubMed  Google Scholar 

  127. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350

    Article  PubMed  PubMed Central  Google Scholar 

  128. Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92:1079–1088

    Article  CAS  PubMed  Google Scholar 

  129. Jiang B, Xu S, Hou X, Pimentel DR, Brecher P, Cohen RA (2004) Temporal control of NF-kappa B activation by ERK differentially regulates interleukin-1beta-induced gene expression. J Biol Chem 279:1323–1329

    Article  CAS  PubMed  Google Scholar 

  130. Pierre S, Eschenhagen T, Geisslinger G, Scholich K (2009) Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov 8:321–335

    Article  CAS  PubMed  Google Scholar 

  131. Roth DM, Gao MH, Lai NC, Drumm J, Dalton N, Zhou JY, Zhu J, Entrikin D, Hammond HK (1999) Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99:3099–3102

    Article  CAS  PubMed  Google Scholar 

  132. Port JD, Bristow MR (2016) Fine tuning adenylyl cyclase as a (gene) therapy for heart failure. JACC Basic Transl Sci 1:630–632

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the invaluable help of Dr. Ruqayya Rizvi and Dr. Seyram Yao Adzraku for proofreading the entire manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No.81370329, No.81461138036), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17-1712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adzika, G.K., Machuki, J.O., Shang, W. et al. Pathological cardiac hypertrophy: the synergy of adenylyl cyclases inhibition in cardiac and immune cells during chronic catecholamine stress. J Mol Med 97, 897–907 (2019). https://doi.org/10.1007/s00109-019-01790-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01790-0

Keywords

Navigation